Abstract

We report on a polarization-maintaining narrow-linewidth high power ytterbium-doped photonic crystal fiber amplifier with an output as high as 260 W and a slope efficiency of approximately 74%. Measurements of the beam quality yielded M2 values in the range of 1.2-1.3. The linewidth was determined at two different powers using an optical heterodyne detection technique and yielded values that were less than 10 KHz. Our maximum output power was pump limited and measurements of the reflected light indicated that we operated below the stimulated Brillouin scattering (SBS) threshold. Using a pump-probe technique, we estimated the Brillouin gain bandwidth to be approximately 68 MHz. In addition, the Brillouin gain spectrum revealed secondary peaks lying at the high-frequency side. In order to study the power limitations of our amplifier, we developed a detailed model that included a distributed noise source for the SBS process and a temperature gradient obtained via quantum defect heating. Our simulations indicated that for this particular fiber amplifier configuration an output power approaching 1 KW can be achieved. We also found that for forced air cooling the SBS threshold saturates regardless of the operating temperature of the polymer coating. Finally, we show that relatively small enhancement is obtained if a continuous transverse acoustic velocity gradient was implemented in conjunction with the thermal gradient. The latter conclusions drawn from our simulations also hold true for conventional fibers.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1 KW of continous-wave ouput power,” Electron. Lett. 40(8), 470–472 (2004).
    [CrossRef]
  2. T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express 14(25), 12188–12195 (2006).
    [CrossRef] [PubMed]
  3. F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, “Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN,” Opt. Express 15(20), 12882–12889 (2007).
    [CrossRef] [PubMed]
  4. C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004).
    [CrossRef]
  5. E. Rochat, K. Haroud, and R. Dändliker, “High power Nd-doped fiber amplifier for coherent intersatellite links,” J. Quantum Electron. 35(10), 1419–1423 (1999).
    [CrossRef]
  6. D. Kracht, R. Wilhelm, M. Frede, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power single- frequency laser for gravitational wave detection,” in Advanced Solid-State Photonics, Technical Digest Optical Society of America, paper WE1 (2006).
  7. J. P. Koplow, D. A. Kliner, and L. Goldberg, “Single-mode operation of a coiled multimode fiber amplifier,” Opt. Lett. 25(7), 442–444 (2000).
    [CrossRef] [PubMed]
  8. D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007).
    [CrossRef]
  9. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
    [CrossRef]
  10. A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers,” in Proc. of 17th ECOC, paper B1.1 (1991).
  11. P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical Fiber with an Acoustic Guiding Stimulated Brillouin Scattering Suppression,” in Conference on lasers and Electro-Optics (CLEO), paper CThZ3 (2005).
  12. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
    [CrossRef] [PubMed]
  13. M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, ““11.2 dB SBS Gain Suppression in a Large Mode Area Yb-Doped Optical Fiber,” in Fiber Lasers V: Technology, Systems, and Applications,” Proc. SPIE 6873, 68730N (2008).
    [CrossRef]
  14. I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
    [CrossRef] [PubMed]
  15. I. Dajani, C. Zeringue, and T. Shay, “Investigation of nonlinear effects in multitone-driven narrow linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
    [CrossRef]
  16. C. Zeringue, I. Dajani, C. Lu, A. Lobad, and C. Vergien, “Experimental verification of two-tone amplification in single frequency fiber amplifiers,” in Nonlinear Optics: Materials, Fundamentals and Applications (NLO), paper PDPA2 (2009).
  17. http://www.crystalfibre.com/
  18. M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14(23), 11071–11076 (2006).
    [CrossRef] [PubMed]
  19. D. Baney, and W. Sorin, “High Resolution Optical Frequency analysis,” in Fiber Optic Test and Measurement, edited by D. Derickson (Prentice-Hall, 1998).
  20. M. Hildebrandt, S. Büsche, P. Wessels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16(20), 15970–15979 (2008).
    [CrossRef] [PubMed]
  21. P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
    [CrossRef]
  22. J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15(23), 15517–15522 (2007).
    [CrossRef] [PubMed]
  23. K. Furusawa, Z. Yusoff, F. Poletti, T. M. Monro, N. G. R. Broderick, and D. J. Richardson, “Brillouin characterization of holey optical fibers,” Opt. Lett. 31(17), 2541–2543 (2006).
    [CrossRef] [PubMed]
  24. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972).
    [CrossRef] [PubMed]
  25. R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
    [CrossRef] [PubMed]
  26. P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: Fundamentals and Technology (Academic press 1999).
  27. G. Agrawal, Nonlinear Fiber Optics, Third Edition (Academic Press 2001).
  28. C. T. Hsu, P. Cheng, and K. W. Wong, “A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media,” J. Heat Transfer 117(2), 264–269 (1995).
    [CrossRef]
  29. V. I. Kovalev and R. G. Harrison, “Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers,” Opt. Lett. 31(2), 161–163 (2006).
    [CrossRef] [PubMed]
  30. J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
    [CrossRef]

2009

I. Dajani, C. Zeringue, and T. Shay, “Investigation of nonlinear effects in multitone-driven narrow linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

2008

2007

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, “Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN,” Opt. Express 15(20), 12882–12889 (2007).
[CrossRef] [PubMed]

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15(23), 15517–15522 (2007).
[CrossRef] [PubMed]

2006

2004

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1 KW of continous-wave ouput power,” Electron. Lett. 40(8), 470–472 (2004).
[CrossRef]

C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004).
[CrossRef]

2000

1999

E. Rochat, K. Haroud, and R. Dändliker, “High power Nd-doped fiber amplifier for coherent intersatellite links,” J. Quantum Electron. 35(10), 1419–1423 (1999).
[CrossRef]

1995

C. T. Hsu, P. Cheng, and K. W. Wong, “A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media,” J. Heat Transfer 117(2), 264–269 (1995).
[CrossRef]

1990

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

1972

Alam, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Alasia, D.

Andrejco, M. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, ““11.2 dB SBS Gain Suppression in a Large Mode Area Yb-Doped Optical Fiber,” in Fiber Lasers V: Technology, Systems, and Applications,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Beugnot, J. C.

Boyd, R. W.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Boyland, A. J.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Broderick, N. G. R.

Bronder, T. J.

Büsche, S.

Chen, X.

Cheng, P.

C. T. Hsu, P. Cheng, and K. W. Wong, “A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media,” J. Heat Transfer 117(2), 264–269 (1995).
[CrossRef]

Clarkson, W. A.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Crowley, A. M.

Dainese, P.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Dajani, I.

Dändliker, R.

E. Rochat, K. Haroud, and R. Dändliker, “High power Nd-doped fiber amplifier for coherent intersatellite links,” J. Quantum Electron. 35(10), 1419–1423 (1999).
[CrossRef]

Demeritt, J. A.

Denman, C. A.

C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004).
[CrossRef]

DiGiovanni, D. J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, ““11.2 dB SBS Gain Suppression in a Large Mode Area Yb-Doped Optical Fiber,” in Fiber Lasers V: Technology, Systems, and Applications,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Drummond, J. D.

C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004).
[CrossRef]

Fini, J.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, ““11.2 dB SBS Gain Suppression in a Large Mode Area Yb-Doped Optical Fiber,” in Fiber Lasers V: Technology, Systems, and Applications,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Fragnito, H. L.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Frede, M.

Furusawa, K.

Gavrielides, A.

Goldberg, L.

Gray, S.

Haroud, K.

E. Rochat, K. Haroud, and R. Dändliker, “High power Nd-doped fiber amplifier for coherent intersatellite links,” J. Quantum Electron. 35(10), 1419–1423 (1999).
[CrossRef]

Harrison, R. G.

Headley, C.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, ““11.2 dB SBS Gain Suppression in a Large Mode Area Yb-Doped Optical Fiber,” in Fiber Lasers V: Technology, Systems, and Applications,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Hellman, P. D.

C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004).
[CrossRef]

Hickey, L. M. B.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Hildebrandt, M.

Horley, R.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Hsu, C. T.

C. T. Hsu, P. Cheng, and K. W. Wong, “A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media,” J. Heat Transfer 117(2), 264–269 (1995).
[CrossRef]

Jeong, Y.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1 KW of continous-wave ouput power,” Electron. Lett. 40(8), 470–472 (2004).
[CrossRef]

Joly, N.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Kalita, M.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Khelif, A.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Kliner, D. A.

Knight, J. C.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Knize, R. J.

Kontur, F. J.

Koplow, J. P.

Kovalev, V. I.

Kracht, D.

Kwee, P.

Laude, V.

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15(23), 15517–15522 (2007).
[CrossRef] [PubMed]

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Li, M. J.

Liu, A.

Lu, Y.

Machewirth, D. P.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Mafang, S. F.

Maillotte, H.

Maran, J.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Mermelstein, M. D.

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, ““11.2 dB SBS Gain Suppression in a Large Mode Area Yb-Doped Optical Fiber,” in Fiber Lasers V: Technology, Systems, and Applications,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Monro, T. M.

Monteville, A.

Moore, G. T.

C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Nilsson, J.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1 KW of continous-wave ouput power,” Electron. Lett. 40(8), 470–472 (2004).
[CrossRef]

O’Connor, M.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Payne, D. N.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1 KW of continous-wave ouput power,” Electron. Lett. 40(8), 470–472 (2004).
[CrossRef]

Poletti, F.

Provino, L.

Richardson, D. J.

Robin, C.

Rochat, E.

E. Rochat, K. Haroud, and R. Dändliker, “High power Nd-doped fiber amplifier for coherent intersatellite links,” J. Quantum Electron. 35(10), 1419–1423 (1999).
[CrossRef]

Ruffin, A. B.

Rzaewski, K.

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Sahu, J. K.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1 KW of continous-wave ouput power,” Electron. Lett. 40(8), 470–472 (2004).
[CrossRef]

Samson, B.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Shay, T.

I. Dajani, C. Zeringue, and T. Shay, “Investigation of nonlinear effects in multitone-driven narrow linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

Shay, T. M.

Smith, R. G.

St. Russell, P.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Sylvestre, T.

Tankala, K.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Telle, J. M.

C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004).
[CrossRef]

Thévenaz, L.

Traynor, N.

Tuffli, A. L.

C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004).
[CrossRef]

Turner, P. W.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

Walton, D. T.

Wang, J.

Wang, Q.

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

Webb, A. S.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Wessels, P.

Wiederhecker, G. S.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Willke, B.

Wong, K. W.

C. T. Hsu, P. Cheng, and K. W. Wong, “A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media,” J. Heat Transfer 117(2), 264–269 (1995).
[CrossRef]

Yoo, S.

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

Yusoff, Z.

Zenteno, L. A.

Zeringue, C.

I. Dajani, C. Zeringue, and T. Shay, “Investigation of nonlinear effects in multitone-driven narrow linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Electron. Lett.

Y. Jeong, J. K. Sahu, D. N. Payne, and J. Nilsson, “Ytterbium-doped large-core fiber laser with 1 KW of continous-wave ouput power,” Electron. Lett. 40(8), 470–472 (2004).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, and P. W. Turner, “Power scaling of single frequency ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007).
[CrossRef]

I. Dajani, C. Zeringue, and T. Shay, “Investigation of nonlinear effects in multitone-driven narrow linewidth high-power amplifiers,” IEEE J. Sel. Top. Quantum Electron. 15(2), 406–414 (2009).
[CrossRef]

J. Heat Transfer

C. T. Hsu, P. Cheng, and K. W. Wong, “A lumped-parameter model for stagnant thermal conductivity of spatially periodic porous media,” J. Heat Transfer 117(2), 264–269 (1995).
[CrossRef]

J. Quantum Electron.

E. Rochat, K. Haroud, and R. Dändliker, “High power Nd-doped fiber amplifier for coherent intersatellite links,” J. Quantum Electron. 35(10), 1419–1423 (1999).
[CrossRef]

Nat. Phys.

P. Dainese, P. St. Russell, N. Joly, J. C. Knight, G. S. Wiederhecker, H. L. Fragnito, V. Laude, and A. Khelif, “Stimulated Brillouin Scattering from multi-GHZ-guided acoustic phonons in nanostructured photonic crystal fibres,” Nat. Phys. 2(6), 388–392 (2006).
[CrossRef]

Opt. Express

J. C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15(23), 15517–15522 (2007).
[CrossRef] [PubMed]

I. Dajani, C. Zeringue, T. J. Bronder, T. Shay, A. Gavrielides, and C. Robin, “A theoretical treatment of two approaches to SBS mitigation with two-tone amplification,” Opt. Express 16(18), 14233–14247 (2008).
[CrossRef] [PubMed]

M. Hildebrandt, S. Büsche, P. Wessels, M. Frede, and D. Kracht, “Brillouin scattering spectra in high-power single-frequency ytterbium doped fiber amplifiers,” Opt. Express 16(20), 15970–15979 (2008).
[CrossRef] [PubMed]

T. M. Shay, “Theory of electronically phased coherent beam combination without a reference beam,” Opt. Express 14(25), 12188–12195 (2006).
[CrossRef] [PubMed]

F. J. Kontur, I. Dajani, Y. Lu, and R. J. Knize, “Frequency-doubling of a CW fiber laser using PPKTP, PPMgSLT, and PPMgLN,” Opt. Express 15(20), 12882–12889 (2007).
[CrossRef] [PubMed]

M. Hildebrandt, M. Frede, P. Kwee, B. Willke, and D. Kracht, “Single-frequency master-oscillator photonic crystal fiber amplifier with 148 W output power,” Opt. Express 14(23), 11071–11076 (2006).
[CrossRef] [PubMed]

M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, and L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Opt. Mater.

C. A. Denman, P. D. Hellman, G. T. Moore, J. M. Telle, J. D. Drummond, and A. L. Tuffli, “20 W CW 589 nm sodium beacon excitation source for adaptive optical telescope applications,” Opt. Mater. 26(4), 507–513 (2004).
[CrossRef]

Phys. Rev. A

R. W. Boyd, K. Rzaewski, and P. Narum, “Noise initiation of stimulated Brillouin scattering,” Phys. Rev. A 42(9), 5514–5521 (1990).
[CrossRef] [PubMed]

Proc. SPIE

J. K. Sahu, S. Yoo, A. J. Boyland, A. S. Webb, M. Kalita, J. Maran, Y. Jeong, J. Nilsson, W. A. Clarkson, and D. N. Payne, ““Fiber design for high-power lasers,” Fiber Lasers VI: Technology, Systems, and Applications,” Proc. SPIE 7195, 71950I (2009).
[CrossRef]

D. P. Machewirth, Q. Wang, B. Samson, K. Tankala, M. O’Connor, and M. Alam, ““ Current developments in high-power, monolithic, polarization maintaining fiber amplifiers for coherent beam combining applications,” in Fiber Lasers IV: Technology, Systems, and Applications,” Proc. SPIE 6453, 64531F (2007).
[CrossRef]

M. D. Mermelstein, M. J. Andrejco, J. Fini, C. Headley, and D. J. DiGiovanni, ““11.2 dB SBS Gain Suppression in a Large Mode Area Yb-Doped Optical Fiber,” in Fiber Lasers V: Technology, Systems, and Applications,” Proc. SPIE 6873, 68730N (2008).
[CrossRef]

Other

A. Wada, T. Nozawa, D. Tanaka, and R. Yamauchi, “Suppression of SBS by intentionally induced periodic residual-strain in single-mode optical fibers,” in Proc. of 17th ECOC, paper B1.1 (1991).

P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical Fiber with an Acoustic Guiding Stimulated Brillouin Scattering Suppression,” in Conference on lasers and Electro-Optics (CLEO), paper CThZ3 (2005).

D. Baney, and W. Sorin, “High Resolution Optical Frequency analysis,” in Fiber Optic Test and Measurement, edited by D. Derickson (Prentice-Hall, 1998).

C. Zeringue, I. Dajani, C. Lu, A. Lobad, and C. Vergien, “Experimental verification of two-tone amplification in single frequency fiber amplifiers,” in Nonlinear Optics: Materials, Fundamentals and Applications (NLO), paper PDPA2 (2009).

http://www.crystalfibre.com/

D. Kracht, R. Wilhelm, M. Frede, C. Fallnich, F. Seifert, B. Willke, and K. Danzmann, “High power single- frequency laser for gravitational wave detection,” in Advanced Solid-State Photonics, Technical Digest Optical Society of America, paper WE1 (2006).

P. C. Becker, N. A. Olsson, and J. R. Simpson, Erbium-doped fiber amplifiers: Fundamentals and Technology (Academic press 1999).

G. Agrawal, Nonlinear Fiber Optics, Third Edition (Academic Press 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

On the right is a microscope image of the PCF used in experiments. The MFD of the fiber is 28 μm and the inner clad diameter is 400 μm. The image on the left is further magnification of the submicron silica bridge web structure that provides the high NA for the pump.

Fig. 2
Fig. 2

Experimental setup showing the counter-propagating pump scheme used. Both the pump and seed lasers are free space coupled into the fiber.

Fig. 3
Fig. 3

Output power of signal vs. launched pump power showing a slope efficiency of 74%. The inset diagram represents the spectrum of the backscattered light.

Fig. 4
Fig. 4

Beam profile and measured M2 value at 200 W output power

Fig. 5
Fig. 5

Experimental set-up for optical heterodyne analysis

Fig. 6
Fig. 6

Optical heterodyne power spectrum for a signal output power of 32 W.

Fig. 7
Fig. 7

Experimental set-up for the pump-probe technique for the Brillouin gain bandwidth measurement.

Fig. 8
Fig. 8

Brillouin gain spectrum at an input power of 7.5 W. A Lorentzian fit provides a bandwidth of 48.6 MHZ.

Fig. 9
Fig. 9

Brillouin gain spectrum at an input power of 2.0 W for a 25/400 Nufern fiber. A Lorentzian fit provides a bandwidth of 62.4MHZ. Note there are no secondary peaks.

Fig. 10
Fig. 10

Brillouin gain bandwidth as a function of pump power.

Fig. 11
Fig. 11

Signal power vs. convective cooling coefficient. The power is normalized to the power at h = 200 W/m2K. The temperature values represent the maximum operating temperature of the polymer coating. The curves in yellow represent 1% reflectivity regardless of the temperature value. Note that at high temperature, the fiber is SBS limited on both sides of the peak. The entire region shaded in green is SBS limited due to the dominance of radiative cooling.

Fig. 12
Fig. 12

Output Stokes spectrum for different temperatures normalized such as the peak for each plot is equal to 1

Fig. 13
Fig. 13

Evolution of signal (green color) for two SBS limited scenarios providing same output power but different temperature profiles (blue color)

Fig. 14
Fig. 14

Comparison of reflectivity for four different cases showing relatively small benefit of using a transverse acoustic gradient in conjunction with a thermal gradient.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

d P l d z = [ g ˜ ( z ) i ( g ˜ B , i ( z ) P s , i + δ i ( z ) ) ] P l
g ˜ ( z ) = ( σ ( e ) N 2 ( x , y , z ) σ ( a ) N 1 ( x , y , z ) ) | φ ( x , y ) | 2 d x d y | φ ( x , y ) | 2 d x d y
g ˜ B , i ( z ) = g B , i ( x , y , z ) | φ ( x , y | 4 d x d y ( | φ ( x , y ) | 2 d x d y ) 2
g B , i ( x , y , z ) = g B , max 1 + 4 { [ Ω B ( T 0 ) + C T Δ T ( x , y , z ) ω l + ω s , i ] 2 / Γ B 2 }
δ i ( z ) = ω s , i Δ ω g B , i ( x , y , z ) | φ ( x , y ) | 4 { exp [ ( ω l ω s , i ) / K T ( x , y , z ) ] 1 } 1 d x d y 2 π ( | φ ( x , y ) | 2 d x d y ) 2
d P s , i d z = ( g ˜ ( z ) + g ˜ B , i ( z ) P l ) P s , i δ i P l
d P p d z = d c o r e 2 d c l a d 2 ( σ p ( e ) N ¯ 2 ( z ) σ p ( a ) N ¯ 1 ( z ) ) P p
Q ( r d c o r e / 2 , z ) = 4 π d c o r e 2 ( d P p ( z ) d z d P l ( z ) d z )
k t h 1 r r ( r T r ) = Q ( z )
k t h T ( r = r o u t e r ) r = h [ T c T ( r = r o u t e r ) ] + e σ s t [ T c 4 T 4 ( r = r o u t e r ) ]

Metrics