Abstract

Optical gain enhancement is demonstrated in a standard mid-infrared quantum cascade laser in pulse operation, using a near infrared illumination on the laser facet. An increase in the laser emission is observed, as well as greater dynamic range, threshold reduction, and a blue shift in the laser cavity modes. The optically induced gain increase allows for optical switching of the laser. All the changes have a nonlinear dependency on the illumination optical power and are attributed to the free carrier concentration increase and the electron transport change in the active region due to the near infrared illumination.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).
  2. K. Frank, Tittel, Yury A. Bakhirkin, Robert F. Curl, Anatoliy A. Kosterev, Matthew R. McCurdy, Stephen G. So and Gerard Wysocki, “Laser Based Chemical Sensor Technology: Recent Advances and Applications” in Advanced Environmental Monitoring, Young J. Kim and Ulrich Platt Editor, Springer Netherlands (2008)
  3. R. Martini and E. A. Whittaker, “Quantum Cascade Laser Based Free Space Optical Communications,” J. Opt. Fiber. Commun. Rep. 2(4), 279–292 (2005).
    [CrossRef]
  4. V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
    [CrossRef]
  5. A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
    [CrossRef] [PubMed]
  6. H. Page, P. Collot, A. de Rossi, V. Ortiz, and C. Sirtori, “High reflectivity metallic mirror coatings for mid-infrared (λ ≈ 9 μm) unipolar semiconductor lasers,” Semicond. Sci. Technol. 17(12), 1312–1316 (2002).
    [CrossRef]
  7. C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995).
    [CrossRef]
  8. D. Dey, W. Wu, O. G. Memis, and H. Mohseni, “Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition,” Appl. Phys. Lett. 94(8), 081109 (2009).
    [CrossRef]
  9. M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
    [CrossRef]
  10. A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
    [CrossRef] [PubMed]
  11. P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
    [CrossRef]
  12. C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
    [CrossRef]
  13. G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009).
    [CrossRef]
  14. T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
    [CrossRef]
  15. J. Mc Tavish, D. Indjin, and P. Harrison, “Aspects of the internal physics of InGaAs/InAlAs quantum cascade lasers,” J. Appl. Phys. 99(11), 114505 (2006).
    [CrossRef]
  16. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc. USA, 1991), Chap. 16.
  17. Z. Liu, D. Wasserman, S. Howard, A. J. Hoffman, C. Gmachl, and ., “Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Regrowth,” IEEE Photon. Technol. Lett. 18(12), 1347–1349 (2006).
    [CrossRef]
  18. Carlo Sirtori and Roland Teissier, “Quantum cascade lasers: overview of basic principles of operation and state of the art” in Intersuband transitions in quantum structures, Roberto Paiella Editor (McGraw-Hill New York, 2006), 15.
  19. C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
    [CrossRef]

2009

D. Dey, W. Wu, O. G. Memis, and H. Mohseni, “Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition,” Appl. Phys. Lett. 94(8), 081109 (2009).
[CrossRef]

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

2007

A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
[CrossRef] [PubMed]

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
[CrossRef]

2006

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[CrossRef]

J. Mc Tavish, D. Indjin, and P. Harrison, “Aspects of the internal physics of InGaAs/InAlAs quantum cascade lasers,” J. Appl. Phys. 99(11), 114505 (2006).
[CrossRef]

Z. Liu, D. Wasserman, S. Howard, A. J. Hoffman, C. Gmachl, and ., “Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Regrowth,” IEEE Photon. Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

2005

R. Martini and E. A. Whittaker, “Quantum Cascade Laser Based Free Space Optical Communications,” J. Opt. Fiber. Commun. Rep. 2(4), 279–292 (2005).
[CrossRef]

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

2002

H. Page, P. Collot, A. de Rossi, V. Ortiz, and C. Sirtori, “High reflectivity metallic mirror coatings for mid-infrared (λ ≈ 9 μm) unipolar semiconductor lasers,” Semicond. Sci. Technol. 17(12), 1312–1316 (2002).
[CrossRef]

2000

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

1999

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

1995

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995).
[CrossRef]

1994

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).

Aellen, T.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[CrossRef]

Barbieri, S.

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

Beck, M.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[CrossRef]

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

Beere, H. E.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Bethea, C. G.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Capasso, F.

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).

Cendejas, R.

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Chen, G.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Cho, A. Y.

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).

Clark, J. C.

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

Cockburn, J. W.

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

Collot, P.

H. Page, P. Collot, A. de Rossi, V. Ortiz, and C. Sirtori, “High reflectivity metallic mirror coatings for mid-infrared (λ ≈ 9 μm) unipolar semiconductor lasers,” Semicond. Sci. Technol. 17(12), 1312–1316 (2002).
[CrossRef]

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

de Rossi, A.

H. Page, P. Collot, A. de Rossi, V. Ortiz, and C. Sirtori, “High reflectivity metallic mirror coatings for mid-infrared (λ ≈ 9 μm) unipolar semiconductor lasers,” Semicond. Sci. Technol. 17(12), 1312–1316 (2002).
[CrossRef]

Dey, D.

D. Dey, W. Wu, O. G. Memis, and H. Mohseni, “Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition,” Appl. Phys. Lett. 94(8), 081109 (2009).
[CrossRef]

Dudek, R.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Escarra, M. D.

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Faist, J.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[CrossRef]

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).

Fan, J.-Y.

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Franz, K. J.

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
[CrossRef] [PubMed]

Frogley, M. D.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
[CrossRef]

Gini, E.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[CrossRef]

Giovannini, M.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[CrossRef]

Gmachl, C.

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
[CrossRef] [PubMed]

Z. Liu, D. Wasserman, S. Howard, A. J. Hoffman, C. Gmachl, and ., “Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Regrowth,” IEEE Photon. Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Go, R.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Grant, P. D.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Grey, R.

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

Harrison, P.

J. Mc Tavish, D. Indjin, and P. Harrison, “Aspects of the internal physics of InGaAs/InAlAs quantum cascade lasers,” J. Appl. Phys. 99(11), 114505 (2006).
[CrossRef]

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Hill, G.

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

Hoffman, A. J.

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
[CrossRef] [PubMed]

Z. Liu, D. Wasserman, S. Howard, A. J. Hoffman, C. Gmachl, and ., “Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Regrowth,” IEEE Photon. Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Hopkinson, M.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
[CrossRef]

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

Howard, S.

Z. Liu, D. Wasserman, S. Howard, A. J. Hoffman, C. Gmachl, and ., “Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Regrowth,” IEEE Photon. Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Howard, S. S.

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

A. J. Hoffman, S. Schartner, S. S. Howard, K. J. Franz, F. Towner, and C. Gmachl, “Low voltage-defect quantum cascade laser with heterogeneous injector regions,” Opt. Express 15(24), 15818–15823 (2007).
[CrossRef] [PubMed]

Hoyler, N.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[CrossRef]

Hutchinson, A. L.

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).

Ikonic, Z.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Indjin, D.

J. Mc Tavish, D. Indjin, and P. Harrison, “Aspects of the internal physics of InGaAs/InAlAs quantum cascade lasers,” J. Appl. Phys. 99(11), 114505 (2006).
[CrossRef]

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Jovanovic, V. D.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Keightley, P. T.

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

Kruck, P.

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

Kundys, D. O.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
[CrossRef]

Linfield, E. H.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Liu, H. C.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

Liu, Z.

Z. Liu, D. Wasserman, S. Howard, A. J. Hoffman, C. Gmachl, and ., “Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Regrowth,” IEEE Photon. Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Marcadet, X.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Martini, R.

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

R. Martini and E. A. Whittaker, “Quantum Cascade Laser Based Free Space Optical Communications,” J. Opt. Fiber. Commun. Rep. 2(4), 279–292 (2005).
[CrossRef]

Mc Tavish, J.

J. Mc Tavish, D. Indjin, and P. Harrison, “Aspects of the internal physics of InGaAs/InAlAs quantum cascade lasers,” J. Appl. Phys. 99(11), 114505 (2006).
[CrossRef]

Memis, O. G.

D. Dey, W. Wu, O. G. Memis, and H. Mohseni, “Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition,” Appl. Phys. Lett. 94(8), 081109 (2009).
[CrossRef]

Mohseni, H.

D. Dey, W. Wu, O. G. Memis, and H. Mohseni, “Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition,” Appl. Phys. Lett. 94(8), 081109 (2009).
[CrossRef]

Nagle, J.

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

Oesterle, U.

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

Ortiz, V.

H. Page, P. Collot, A. de Rossi, V. Ortiz, and C. Sirtori, “High reflectivity metallic mirror coatings for mid-infrared (λ ≈ 9 μm) unipolar semiconductor lasers,” Semicond. Sci. Technol. 17(12), 1312–1316 (2002).
[CrossRef]

Page, H.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

H. Page, P. Collot, A. de Rossi, V. Ortiz, and C. Sirtori, “High reflectivity metallic mirror coatings for mid-infrared (λ ≈ 9 μm) unipolar semiconductor lasers,” Semicond. Sci. Technol. 17(12), 1312–1316 (2002).
[CrossRef]

Patel, C. K.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Phillips, C. C.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
[CrossRef]

Piazza, V.

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

Pushkarsky, M.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Razeghi, M.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Ritchie, D. A.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Schartner, S.

Sirtori, C.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

H. Page, P. Collot, A. de Rossi, V. Ortiz, and C. Sirtori, “High reflectivity metallic mirror coatings for mid-infrared (λ ≈ 9 μm) unipolar semiconductor lasers,” Semicond. Sci. Technol. 17(12), 1312–1316 (2002).
[CrossRef]

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).

Sivco, D. L.

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995).
[CrossRef]

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).

Skolnick, M. S.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
[CrossRef]

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

Towner, F.

Tsekoun, A.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Vukmirovic, N.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Wang, X.

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

Wasserman, D.

Z. Liu, D. Wasserman, S. Howard, A. J. Hoffman, C. Gmachl, and ., “Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Regrowth,” IEEE Photon. Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

Whittaker, E. A.

R. Martini and E. A. Whittaker, “Quantum Cascade Laser Based Free Space Optical Communications,” J. Opt. Fiber. Commun. Rep. 2(4), 279–292 (2005).
[CrossRef]

Wilson, L. R.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
[CrossRef]

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

Worrall, C.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

Wu, W.

D. Dey, W. Wu, O. G. Memis, and H. Mohseni, “Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition,” Appl. Phys. Lett. 94(8), 081109 (2009).
[CrossRef]

Zervos, C.

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
[CrossRef]

Appl. Phys. Lett.

V. D. Jovanović, D. Indjin, N. Vukmirović, Z. Ikonić, P. Harrison, E. H. Linfield, H. Page, X. Marcadet, C. Sirtori, C. Worrall, H. E. Beere, and D. A. Ritchie, “Mechanisms of dynamic range limitations in GaAs/AlGaAs quantum-cascade lasers: Influence of injector doping,” Appl. Phys. Lett. 86(21), 211117 (2005).
[CrossRef]

C. Sirtori, J. Faist, F. Capasso, D. L. Sivco, A. L. Hutchinson, and A. Y. Cho, “Quantum cascade laser with plasmon-enhanced waveguide operating at 8.4 µm wavelength,” Appl. Phys. Lett. 66(24), 3242 (1995).
[CrossRef]

D. Dey, W. Wu, O. G. Memis, and H. Mohseni, “Injectorless quantum cascade laser with low voltage defect and improved thermal performance grown by metal-organic chemical-vapor deposition,” Appl. Phys. Lett. 94(8), 081109 (2009).
[CrossRef]

M. D. Escarra, A. J. Hoffman, K. J. Franz, S. S. Howard, R. Cendejas, X. Wang, J.-Y. Fan, and C. Gmachl, “Quantum cascade lasers with voltage defect of less than one longitudinal optical phonon energy,” Appl. Phys. Lett. 94(25), 251114 (2009).
[CrossRef]

C. Zervos, M. D. Frogley, C. C. Phillips, D. O. Kundys, L. R. Wilson, M. Hopkinson, and M. S. Skolnick, “All-optical switching in quantum cascade laser,” Appl. Phys. Lett. 90(5), 053505 (2007).
[CrossRef]

G. Chen, C. G. Bethea, R. Martini, P. D. Grant, R. Dudek, and H. C. Liu, “high speed all-optical modulation of a standard quantum cascade laser,” Appl. Phys. Lett. 95(10), 101104 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

Z. Liu, D. Wasserman, S. Howard, A. J. Hoffman, C. Gmachl, and ., “Room-Temperature Continuous-Wave Quantum Cascade Lasers Grown by MOCVD Without Lateral Regrowth,” IEEE Photon. Technol. Lett. 18(12), 1347–1349 (2006).
[CrossRef]

C. Sirtori, S. Barbieri, P. Kruck, V. Piazza, M. Beck, J. Faist, U. Oesterle, P. Collot, and J. Nagle, “Influence of DX centers on the performance of unipolar semiconductor lasers based on GaAs-AlxGa1-xAs,” IEEE Photon. Technol. Lett. 11(9), 1090–1092 (1999).
[CrossRef]

J. Appl. Phys.

T. Aellen, M. Beck, N. Hoyler, M. Giovannini, J. Faist, and E. Gini, “Doping in quantum cascade lasers. I. InAlAs–InGaAs/InP midinfrared devices,” J. Appl. Phys. 100(4), 043101 (2006).
[CrossRef]

J. Mc Tavish, D. Indjin, and P. Harrison, “Aspects of the internal physics of InGaAs/InAlAs quantum cascade lasers,” J. Appl. Phys. 99(11), 114505 (2006).
[CrossRef]

J. Opt. Fiber. Commun. Rep.

R. Martini and E. A. Whittaker, “Quantum Cascade Laser Based Free Space Optical Communications,” J. Opt. Fiber. Commun. Rep. 2(4), 279–292 (2005).
[CrossRef]

Opt. Express

Physica E

P. T. Keightley, L. R. Wilson, J. W. Cockburn, M. S. Skolnick, J. C. Clark, R. Grey, G. Hill, and M. Hopkinson, “Improved performance from GaAs-AlGaAs quantum cascade lasers with enhanced upper laser level confinement,” Physica E 7(1-2), 8–11 (2000).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

A. Tsekoun, R. Go, M. Pushkarsky, M. Razeghi, and C. K. Patel, “Improved performance of quantum cascade lasers through a scalable, manufacturable epitaxial-side-down mounting process,” Proc. Natl. Acad. Sci. U.S.A. 103(13), 4831–4835 (2006).
[CrossRef] [PubMed]

Science, New Series

J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, “Quantum Cascade Laser,” Science, New Series 264, 553–556 (1994).

Semicond. Sci. Technol.

H. Page, P. Collot, A. de Rossi, V. Ortiz, and C. Sirtori, “High reflectivity metallic mirror coatings for mid-infrared (λ ≈ 9 μm) unipolar semiconductor lasers,” Semicond. Sci. Technol. 17(12), 1312–1316 (2002).
[CrossRef]

Other

K. Frank, Tittel, Yury A. Bakhirkin, Robert F. Curl, Anatoliy A. Kosterev, Matthew R. McCurdy, Stephen G. So and Gerard Wysocki, “Laser Based Chemical Sensor Technology: Recent Advances and Applications” in Advanced Environmental Monitoring, Young J. Kim and Ulrich Platt Editor, Springer Netherlands (2008)

Carlo Sirtori and Roland Teissier, “Quantum cascade lasers: overview of basic principles of operation and state of the art” in Intersuband transitions in quantum structures, Roberto Paiella Editor (McGraw-Hill New York, 2006), 15.

B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons Inc. USA, 1991), Chap. 16.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Pulse operated QCL I-L curve and I-V with (solid line) and without (dash line) illumination. Inset: temporal response of QCL output operated below threshold with no illumination (dashed line) and with illumination (solid line). (b) Pulse operated QCL optical power dependency on the incident optical power at different bias.

Fig. 2
Fig. 2

(a) The QCL MIR emission dependency on the NIR spot position (squares) and its fit with an exponential decay (line). The inset is a high resolution microscope photograph of the QCL facet illustrating the direction of the NIR laser scan. (b) The QCL cavity modes blue shift dependency on the incident optical power. Inset gives the cavity modes red shift in the QCL caused by temperature.

Fig. 3
Fig. 3

The relation between gain and illumination power (square) and its exponential fit (line).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( λ m ) = 1 2 L 0 λ m + 1 λ m λ m λ m + 1
I o u t = 0.5 × I s ( 1 R ) [ 2 d γ 0 2 d ( α w + α m 2 ) ln ( R ) 1 ]
η I t h = ω N p 2 e A α m Γ g

Metrics