Abstract

LN photonic wires of cross-section dimensions down to 1 × 0.73 µm2 were fabricated by Ar milling of a single-crystalline LiNbO3 (LN) film bonded to a SiO2/LiNbO3 substrate. Mode intensity distributions, propagation losses, and group indices of refraction were measured at 1.55 µm wavelength and compared with simulation results. Moreover, effective mode indices and end face reflectivities were numerically evaluated. The waveguide of 1 µm top width is the smallest LN photonic wire reported to date; it has a mode size of ~0.4 µm2 (0.5 µm2) only and propagation losses of 9.9 dB/cm (12.9 dB/cm) for qTM (qTE) polarization.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
    [CrossRef]
  2. D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
    [CrossRef]
  3. A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
    [CrossRef]
  4. F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E. B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009).
    [CrossRef] [PubMed]
  5. T. Takaoka, M. Fujimura, and T. Suhara, “Fabrication of ridge waveguides in LiNbO3 thin film crystal by proton-exchange accelerated etching,” Electron. Lett. 45(18), 940–941 (2009).
    [CrossRef]
  6. G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
    [CrossRef]
  7. G. W. Burr, S. Diziain, and M.-P. Bernal, “Theoretical study of lithium niobate slab waveguides for integrated optics applications,” Opt. Mater. 31(10), 1492–1497 (2009).
    [CrossRef]
  8. H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
    [CrossRef]
  9. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
    [CrossRef]
  10. W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005).
    [CrossRef]
  11. H. Hu, R. Ricken, and W. Sohler, Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast, Topical Meeting “Photorefractive Materials, Effects, and Devices - Control of Light and Matter” (PR 09), Bad Honnef, Germany 2009. On the poster, presented to PR 09, a photograph of a 3 inch LNOI wafer was shown. A manuscript to describe the LNOI-technology developed is in preparation.
  12. A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti, “Nonlinear optical properties of (H+, He+) - implanted planar waveguides in Z-cut lithium niobate: annealing effect,” J. Opt. Soc. Am. B 18(12), 1832–1840 (2001).
    [CrossRef]
  13. H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B . submitted.
  14. P. G. Glöersen, “Ion beam etching,” J. Vac. Sci. Technol. 12(1), 28–35 (1975).
  15. G. Carter, “The physics and applications of ion beam erosion,” J. Phys. D Appl. Phys. 34(3), 201 (2001).
    [CrossRef]
  16. R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
    [CrossRef]
  17. Z. M. Zhu and T. G. Brown, “Full-vectorial finite-difference analysis of microstructured optical fibers,” Opt. Express 10(17), 853–864 (2002), http://www.opticsinfobase.org/oe/abstract.cfm?uri=OE-10-17-853 .
    [PubMed]
  18. Lumerical Solutions, http://www.lumerical.com/
  19. D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1-2), 15–19 (2005).
    [CrossRef]
  20. T. Ikegami, “Reflectivity of mode at facet and oscillation mode in double heterostructure injection lasers,” IEEE J. Quantum Electron. 8(6), 470–476 (1972).
    [CrossRef]
  21. H. A. Jamid and M. Z. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Pade approximants,” IEEE J. Quantum Electron. 43(4), 343–349 (2007).
    [CrossRef]
  22. F. Grillot, L. Viv, S. Laval, and E. Cassan, “Propagation loss in single-mode ultrasmall square silicon-on-insulator optical waveguides,” J. Lightwave Technol. 24(2), 891–896 (2006).
    [CrossRef]
  23. E. Dulkeith, F. N. Xia, L. Schares, W. M. J. Green, and Y. A. Vlasov, “Group index and group velocity dispersion in silicon-on-insulator photonic wires,” Opt. Express 14(9), 3853–3863 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-9-3853 .
    [CrossRef] [PubMed]
  24. A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B4B), L383–L385 (2001).
    [CrossRef]
  25. D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
    [CrossRef]
  26. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14(12), 3319–3322 (1997).
    [CrossRef]

2009

F. Schrempel, T. Gischkat, H. Hartung, T. Höche, E. B. Kley, A. Tünnermann, and W. Wesch, “Ultrathin membranes in x-cut lithium niobate,” Opt. Lett. 34(9), 1426–1428 (2009).
[CrossRef] [PubMed]

T. Takaoka, M. Fujimura, and T. Suhara, “Fabrication of ridge waveguides in LiNbO3 thin film crystal by proton-exchange accelerated etching,” Electron. Lett. 45(18), 940–941 (2009).
[CrossRef]

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

G. W. Burr, S. Diziain, and M.-P. Bernal, “Theoretical study of lithium niobate slab waveguides for integrated optics applications,” Opt. Mater. 31(10), 1492–1497 (2009).
[CrossRef]

2007

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

H. A. Jamid and M. Z. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Pade approximants,” IEEE J. Quantum Electron. 43(4), 343–349 (2007).
[CrossRef]

D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
[CrossRef]

2006

2005

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005).
[CrossRef]

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1-2), 15–19 (2005).
[CrossRef]

2002

2001

G. Carter, “The physics and applications of ion beam erosion,” J. Phys. D Appl. Phys. 34(3), 201 (2001).
[CrossRef]

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B4B), L383–L385 (2001).
[CrossRef]

A. Boudrioua, J. C. Loulergue, F. Laurell, and P. Moretti, “Nonlinear optical properties of (H+, He+) - implanted planar waveguides in Z-cut lithium niobate: annealing effect,” J. Opt. Soc. Am. B 18(12), 1832–1840 (2001).
[CrossRef]

1997

1985

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

1975

P. G. Glöersen, “Ion beam etching,” J. Vac. Sci. Technol. 12(1), 28–35 (1975).

1972

T. Ikegami, “Reflectivity of mode at facet and oscillation mode in double heterostructure injection lasers,” IEEE J. Quantum Electron. 8(6), 470–476 (1972).
[CrossRef]

Arakawa, Y.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

Baba, T.

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B4B), L383–L385 (2001).
[CrossRef]

Bakhru, H.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

Bakhru, S.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

Bernal, M.-P.

G. W. Burr, S. Diziain, and M.-P. Bernal, “Theoretical study of lithium niobate slab waveguides for integrated optics applications,” Opt. Mater. 31(10), 1492–1497 (2009).
[CrossRef]

Boudrioua, A.

Brown, T. G.

Burr, G. W.

G. W. Burr, S. Diziain, and M.-P. Bernal, “Theoretical study of lithium niobate slab waveguides for integrated optics applications,” Opt. Mater. 31(10), 1492–1497 (2009).
[CrossRef]

Carter, G.

G. Carter, “The physics and applications of ion beam erosion,” J. Phys. D Appl. Phys. 34(3), 201 (2001).
[CrossRef]

Cassan, E.

Cerda-Pons, G.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

Cheben, P.

D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
[CrossRef]

Christodoulides, D.

D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
[CrossRef]

Chu, T.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

Das, B.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005).
[CrossRef]

Degl’innocenti, R.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Dey, D.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005).
[CrossRef]

Diziain, S.

G. W. Burr, S. Diziain, and M.-P. Bernal, “Theoretical study of lithium niobate slab waveguides for integrated optics applications,” Opt. Mater. 31(10), 1492–1497 (2009).
[CrossRef]

Djukic, D.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

Duchesne, D.

D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
[CrossRef]

Dulkeith, E.

Fujimura, M.

T. Takaoka, M. Fujimura, and T. Suhara, “Fabrication of ridge waveguides in LiNbO3 thin film crystal by proton-exchange accelerated etching,” Electron. Lett. 45(18), 940–941 (2009).
[CrossRef]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Gischkat, T.

Glöersen, P. G.

P. G. Glöersen, “Ion beam etching,” J. Vac. Sci. Technol. 12(1), 28–35 (1975).

Green, W. M. J.

Grillot, F.

Guarino, A.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Günter, P.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Hajfler, J.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Hara, G.

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B4B), L383–L385 (2001).
[CrossRef]

Hartung, H.

Höche, T.

Hu, H.

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B . submitted.

Ikegami, T.

T. Ikegami, “Reflectivity of mode at facet and oscillation mode in double heterostructure injection lasers,” IEEE J. Quantum Electron. 8(6), 470–476 (1972).
[CrossRef]

Ishida, S.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

Jamid, H. A.

H. A. Jamid and M. Z. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Pade approximants,” IEEE J. Quantum Electron. 43(4), 343–349 (2007).
[CrossRef]

Janz, S.

D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
[CrossRef]

Jundt, D.

Khan, M. Z. M.

H. A. Jamid and M. Z. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Pade approximants,” IEEE J. Quantum Electron. 43(4), 343–349 (2007).
[CrossRef]

Kley, E. B.

Koechlin, M.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Labukhin, D.

D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1-2), 15–19 (2005).
[CrossRef]

Lamontagne, B.

D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
[CrossRef]

Laurell, F.

Laval, S.

Li, X.

D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1-2), 15–19 (2005).
[CrossRef]

Loulergue, J. C.

Morandotti, R.

D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
[CrossRef]

Moretti, P.

Osgood, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

Poberaj, G.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Rabiei, P.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

Regener, R.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Reza, S.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005).
[CrossRef]

Rezzonico, D.

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Ricken, R.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005).
[CrossRef]

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B . submitted.

Roth, R. M.

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

Sakai, A.

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B4B), L383–L385 (2001).
[CrossRef]

Schares, L.

Schrempel, F.

Small, D. L.

Sohler, W.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005).
[CrossRef]

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B . submitted.

Steier, W. H.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

Suche, H.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005).
[CrossRef]

Suhara, T.

T. Takaoka, M. Fujimura, and T. Suhara, “Fabrication of ridge waveguides in LiNbO3 thin film crystal by proton-exchange accelerated etching,” Electron. Lett. 45(18), 940–941 (2009).
[CrossRef]

Sulser, F.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

Takaoka, T.

T. Takaoka, M. Fujimura, and T. Suhara, “Fabrication of ridge waveguides in LiNbO3 thin film crystal by proton-exchange accelerated etching,” Electron. Lett. 45(18), 940–941 (2009).
[CrossRef]

Tünnermann, A.

Viv, L.

Vlasov, Y. A.

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Wesch, W.

Xia, F. N.

Xu, D.-X.

D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
[CrossRef]

Yamada, H.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

Zelmon, D. E.

Zhu, Z. M.

Appl. Phys. B

H. Hu, R. Ricken, and W. Sohler, “Low-loss ridge waveguides on lithium niobate fabricated by local diffusion doping with titanium,” Appl. Phys. B . submitted.

R. Regener and W. Sohler, “Loss in low-finesse Ti:LiNbO3 optical waveguide resonators,” Appl. Phys. B 36(3), 143–147 (1985).
[CrossRef]

Appl. Phys. Lett.

P. Rabiei and W. H. Steier, “Lithium niobate ridge waveguides and modulators fabricated using smart guide,” Appl. Phys. Lett. 86(16), 161115 (2005).
[CrossRef]

D. Djukic, G. Cerda-Pons, R. M. Roth, R. M. Osgood, S. Bakhru, and H. Bakhru, “Electro-optically tunable second-harmonic-generation gratings in ion-exfoliated thin films of periodically poled lithium niobate,” Appl. Phys. Lett. 90(17), 171116 (2007).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys., A Mater. Sci. Process. 37(4), 191–203 (1985).
[CrossRef]

Electron. Lett.

T. Takaoka, M. Fujimura, and T. Suhara, “Fabrication of ridge waveguides in LiNbO3 thin film crystal by proton-exchange accelerated etching,” Electron. Lett. 45(18), 940–941 (2009).
[CrossRef]

IEEE J. Quantum Electron.

T. Ikegami, “Reflectivity of mode at facet and oscillation mode in double heterostructure injection lasers,” IEEE J. Quantum Electron. 8(6), 470–476 (1972).
[CrossRef]

H. A. Jamid and M. Z. M. Khan, “3-D full-vectorial analysis of strong optical waveguide discontinuities using Pade approximants,” IEEE J. Quantum Electron. 43(4), 343–349 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

H. Yamada, T. Chu, S. Ishida, and Y. Arakawa, “Si photonic wire waveguide devices,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006).
[CrossRef]

IEICE Trans. Electron.

W. Sohler, B. Das, D. Dey, S. Reza, H. Suche, and R. Ricken, “Erbium-doped lithium niobate waveguides lasers,” IEICE Trans. Electron. E88(C), 990–997 (2005).
[CrossRef]

J. Comput. Electron.

D. Labukhin and X. Li, “Three-dimensional finite-difference time-domain simulation of facet reflection through parallel computing,” J. Comput. Electron. 4(1-2), 15–19 (2005).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

J. Phys. D Appl. Phys.

G. Carter, “The physics and applications of ion beam erosion,” J. Phys. D Appl. Phys. 34(3), 201 (2001).
[CrossRef]

J. Vac. Sci. Technol.

P. G. Glöersen, “Ion beam etching,” J. Vac. Sci. Technol. 12(1), 28–35 (1975).

Jpn. J. Appl. Phys.

A. Sakai, G. Hara, and T. Baba, “Propagation characteristics of ultrahigh-Δ optical waveguide on silicon-on-insulator substrate,” Jpn. J. Appl. Phys. 40(Part 2, No. 4B4B), L383–L385 (2001).
[CrossRef]

Nat. Photonics

A. Guarino, G. Poberaj, D. Rezzonico, R. Degl’innocenti, and P. Günter, “Electro–optically tunable microring resonators in lithium niobate,” Nat. Photonics 1(7), 407–410 (2007).
[CrossRef]

Opt. Eng.

D. Duchesne, P. Cheben, R. Morandotti, B. Lamontagne, D.-X. Xu, S. Janz, and D. Christodoulides, “Group-index birefringence and loss measurements in silicon-on-insulator photonic wire waveguides,” Opt. Eng. 46(10), 104602 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

G. Poberaj, M. Koechlin, F. Sulser, A. Guarino, J. Hajfler, and P. Günter, “Ion-sliced lithium niobate thin films for active photonic devices,” Opt. Mater. 31(7), 1054–1058 (2009).
[CrossRef]

G. W. Burr, S. Diziain, and M.-P. Bernal, “Theoretical study of lithium niobate slab waveguides for integrated optics applications,” Opt. Mater. 31(10), 1492–1497 (2009).
[CrossRef]

Other

H. Hu, R. Ricken, and W. Sohler, Large area, crystal-bonded LiNbO3 thin films and ridge waveguides of high refractive index contrast, Topical Meeting “Photorefractive Materials, Effects, and Devices - Control of Light and Matter” (PR 09), Bad Honnef, Germany 2009. On the poster, presented to PR 09, a photograph of a 3 inch LNOI wafer was shown. A manuscript to describe the LNOI-technology developed is in preparation.

Lumerical Solutions, http://www.lumerical.com/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagrams of the cross-section of the LNOI sample (left) used to fabricate LN photonic wires (right) by Ar-milling.

Fig. 2
Fig. 2

SEM pictures of micro-channel ridge guides (photonic wires) of 1 µm top width. The trenches on both sides of the ridges reach near the surface of the SiO2 buffer layer.

Fig. 3
Fig. 3

Measured (left) and calculated (middle) intensity distribution of the fundamental mode in a photonic wire of 2 µm top width (qTE-polarization; λ = 1.55 µm). The intensity distribution of the simulated second order mode is shown on the right. The profile, used for the simulations, is indicated (middle and right).

Fig. 4
Fig. 4

Measured (left) and calculated (middle) intensity distribution of the fundamental mode in a channel waveguide of 1 µm top width (qTM-polarization; λ = 1.55 µm). The intensity distribution of the simulated second order mode is shown on the right. The profile, used for the simulations, is indicated (middle and right).

Fig. 5
Fig. 5

Calculated end face reflectivities of the fundamental modes of qTE and qTM polarization, respectively, versus the top width of LN photonic wires of 730 nm thickness.

Fig. 6
Fig. 6

Normalized transmission in qTE (qTM) polarization of a channel guide of 2 (1) µm top width as function of the wavelength (left / right).

Fig. 7
Fig. 7

Calculated effective and group indices for the fundamental modes of qTE and qTM polarization in photonic wires of 2 µm and 1 µm top widths, respectively, versus the wavelength. The measured group indices of photonic wires, the calculated group indices of bulk LN, and the refractive indices of bulk LN and SiO2 are shown as well for comparison.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = 4.34 L ( ln R ln R ˜ )   with   R ˜ = 1 K ( 1 1 k 2 )   and   K = I m a x I m i n I m a x + I m i n

Metrics