Abstract

We report a continuous variable key distribution system that achieves a final secure key rate of 3.45 kilobits/s over a distance of 24.2 km of optical fiber. The protocol uses discrete signaling and post-selection to improve reconciliation speed and quantifies security by means of quantum state tomography. Polarization multiplexing and a frequency translation scheme permit transmission of a continuous wave local oscillator and suppression of noise from guided acoustic wave Brillouin scattering by more than 27 dB.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. H. Bennett and G. Grassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, Newyork, 1984), 175–179.
  2. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
    [CrossRef] [PubMed]
  3. M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, (Cambridge University Press, UK, 2000).
  4. N. J. Cerf, M. Lévy, and G. Van Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
    [CrossRef]
  5. F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
    [CrossRef] [PubMed]
  6. S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous-variable quantum key distribution using polarization encoding and post selection,” Appl. Phys. B 79, 273–277 (2004).
    [CrossRef]
  7. J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
    [CrossRef]
  8. S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New. J. Phys. 11, 045023 (2009).
    [CrossRef]
  9. B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
    [CrossRef]
  10. A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
    [CrossRef] [PubMed]
  11. T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
    [CrossRef]
  12. S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
    [CrossRef]
  13. F. Grosshans and P. Grangier, “Reverse reconciliation protocols for quantum cryptography with continuous variables,” http://www.arxiv.org/abs/quant-ph/0204127v1.
  14. F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
    [CrossRef] [PubMed]
  15. M. Navascués and A. Acín, “Security bounds for continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020505 (2005).
    [CrossRef] [PubMed]
  16. R. García-Patrón and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
    [CrossRef] [PubMed]
  17. M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
    [CrossRef] [PubMed]
  18. R. Namiki and T. Hirano, “Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection,” Phys. Rev. A 74, 032302 (2006).
    [CrossRef]
  19. M. Heid and N. Lütkenhaus, “Security of coherent-state quantum cryptography in the presence of Gaussian noise,” Phys. Rev. A 76, 022313 (2007).
    [CrossRef]
  20. A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102, 180504 (2009).
    [CrossRef] [PubMed]
  21. Y. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, “Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks,” Phys. Rev. A 79, 012307 (2009).
    [CrossRef]
  22. Z. Zhang and P. L. Voss, “Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems,” Opt. Exp. 17, 12090–12108 (2009).
    [CrossRef]
  23. A. J. Poustie, “Guided acoustic-wave Brillouin scattering with optical pulses,” Opt. Lett. 17, 574–576 (1992).
    [CrossRef] [PubMed]

2009 (4)

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New. J. Phys. 11, 045023 (2009).
[CrossRef]

A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102, 180504 (2009).
[CrossRef] [PubMed]

Y. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, “Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks,” Phys. Rev. A 79, 012307 (2009).
[CrossRef]

Z. Zhang and P. L. Voss, “Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems,” Opt. Exp. 17, 12090–12108 (2009).
[CrossRef]

2007 (4)

T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
[CrossRef]

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[CrossRef]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

M. Heid and N. Lütkenhaus, “Security of coherent-state quantum cryptography in the presence of Gaussian noise,” Phys. Rev. A 76, 022313 (2007).
[CrossRef]

2006 (3)

R. García-Patrón and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[CrossRef] [PubMed]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[CrossRef] [PubMed]

R. Namiki and T. Hirano, “Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection,” Phys. Rev. A 74, 032302 (2006).
[CrossRef]

2005 (4)

A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
[CrossRef] [PubMed]

S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[CrossRef]

F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
[CrossRef] [PubMed]

M. Navascués and A. Acín, “Security bounds for continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020505 (2005).
[CrossRef] [PubMed]

2004 (1)

S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous-variable quantum key distribution using polarization encoding and post selection,” Appl. Phys. B 79, 273–277 (2004).
[CrossRef]

2003 (1)

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[CrossRef] [PubMed]

2001 (1)

N. J. Cerf, M. Lévy, and G. Van Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
[CrossRef]

1992 (1)

1991 (1)

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

1984 (1)

C. H. Bennett and G. Grassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, Newyork, 1984), 175–179.

Acín, A.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[CrossRef] [PubMed]

M. Navascués and A. Acín, “Security bounds for continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020505 (2005).
[CrossRef] [PubMed]

Alton, D.J.

T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
[CrossRef]

Assad, S. M.

T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
[CrossRef]

Bennett, C. H.

C. H. Bennett and G. Grassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, Newyork, 1984), 175–179.

Bloch, M.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Braunstein, S. L.

S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[CrossRef]

Brouri, R.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[CrossRef] [PubMed]

Cerf, N. J.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[CrossRef] [PubMed]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[CrossRef] [PubMed]

N. J. Cerf, M. Lévy, and G. Van Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
[CrossRef]

Chuang, I. L.

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, (Cambridge University Press, UK, 2000).

Debuisschert, T.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New. J. Phys. 11, 045023 (2009).
[CrossRef]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Diamanti, E.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New. J. Phys. 11, 045023 (2009).
[CrossRef]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Ekert, A. K.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

Fossier, S.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New. J. Phys. 11, 045023 (2009).
[CrossRef]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Garcia-Patron, R.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

García-Patrón, R.

R. García-Patrón and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[CrossRef] [PubMed]

Grangier, P.

A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102, 180504 (2009).
[CrossRef] [PubMed]

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New. J. Phys. 11, 045023 (2009).
[CrossRef]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[CrossRef] [PubMed]

F. Grosshans and P. Grangier, “Reverse reconciliation protocols for quantum cryptography with continuous variables,” http://www.arxiv.org/abs/quant-ph/0204127v1.

Grassard, G.

C. H. Bennett and G. Grassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, Newyork, 1984), 175–179.

Grosshans, F.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[CrossRef] [PubMed]

F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
[CrossRef] [PubMed]

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[CrossRef] [PubMed]

F. Grosshans and P. Grangier, “Reverse reconciliation protocols for quantum cryptography with continuous variables,” http://www.arxiv.org/abs/quant-ph/0204127v1.

Heid, M.

Y. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, “Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks,” Phys. Rev. A 79, 012307 (2009).
[CrossRef]

M. Heid and N. Lütkenhaus, “Security of coherent-state quantum cryptography in the presence of Gaussian noise,” Phys. Rev. A 76, 022313 (2007).
[CrossRef]

Hirano, T.

R. Namiki and T. Hirano, “Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection,” Phys. Rev. A 74, 032302 (2006).
[CrossRef]

Huang, L. L.

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[CrossRef]

Karpov, E.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Korolkova, N.

S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous-variable quantum key distribution using polarization encoding and post selection,” Appl. Phys. B 79, 273–277 (2004).
[CrossRef]

Lam, P. K.

T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
[CrossRef]

A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
[CrossRef] [PubMed]

Lance, A. M.

T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
[CrossRef]

A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
[CrossRef] [PubMed]

Leuchs, G.

S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous-variable quantum key distribution using polarization encoding and post selection,” Appl. Phys. B 79, 273–277 (2004).
[CrossRef]

Leverrier, A.

A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102, 180504 (2009).
[CrossRef] [PubMed]

Lévy, M.

N. J. Cerf, M. Lévy, and G. Van Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
[CrossRef]

Lo, H. K.

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[CrossRef]

Lodewyck, J.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Lorenz, S.

S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous-variable quantum key distribution using polarization encoding and post selection,” Appl. Phys. B 79, 273–277 (2004).
[CrossRef]

Lütkenhaus, N.

Y. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, “Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks,” Phys. Rev. A 79, 012307 (2009).
[CrossRef]

M. Heid and N. Lütkenhaus, “Security of coherent-state quantum cryptography in the presence of Gaussian noise,” Phys. Rev. A 76, 022313 (2007).
[CrossRef]

McLaughlin, S. W.

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Namiki, R.

R. Namiki and T. Hirano, “Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection,” Phys. Rev. A 74, 032302 (2006).
[CrossRef]

Navascués, M.

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[CrossRef] [PubMed]

M. Navascués and A. Acín, “Security bounds for continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020505 (2005).
[CrossRef] [PubMed]

Nielsen, M. A.

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, (Cambridge University Press, UK, 2000).

Poustie, A. J.

Qi, B.

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[CrossRef]

Qian, L.

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[CrossRef]

Ralph, T. C.

T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
[CrossRef]

A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
[CrossRef] [PubMed]

Rigas, J.

Y. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, “Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks,” Phys. Rev. A 79, 012307 (2009).
[CrossRef]

Sharma, V.

A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
[CrossRef] [PubMed]

Symul, T.

T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
[CrossRef]

A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
[CrossRef] [PubMed]

Tualle-Brouri, R.

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New. J. Phys. 11, 045023 (2009).
[CrossRef]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

Van Assche, G.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[CrossRef] [PubMed]

N. J. Cerf, M. Lévy, and G. Van Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
[CrossRef]

Van Loock, P.

S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[CrossRef]

Voss, P. L.

Z. Zhang and P. L. Voss, “Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems,” Opt. Exp. 17, 12090–12108 (2009).
[CrossRef]

Weedbrook, C.

T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
[CrossRef]

A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
[CrossRef] [PubMed]

Wenger, J.

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[CrossRef] [PubMed]

Zhang, Z.

Z. Zhang and P. L. Voss, “Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems,” Opt. Exp. 17, 12090–12108 (2009).
[CrossRef]

Zhao, Y.

Y. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, “Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks,” Phys. Rev. A 79, 012307 (2009).
[CrossRef]

Appl. Phys. B (1)

S. Lorenz, N. Korolkova, and G. Leuchs, “Continuous-variable quantum key distribution using polarization encoding and post selection,” Appl. Phys. B 79, 273–277 (2004).
[CrossRef]

Nature (1)

F. Grosshans, G. Van Assche, J. Wenger, R. Brouri, N. J. Cerf, and P. Grangier, “Quantum key distribution using gaussian-modulated coherent states,” Nature 421, 238–241 (2003).
[CrossRef] [PubMed]

New. J. Phys. (1)

S. Fossier, E. Diamanti, T. Debuisschert, R. Tualle-Brouri, and P. Grangier, “Field test of a continuous-variable quantum key distribution prototype,” New. J. Phys. 11, 045023 (2009).
[CrossRef]

Opt. Exp. (1)

Z. Zhang and P. L. Voss, “Security of a discretely signaled continuous variable quantum key distribution protocol for high rate systems,” Opt. Exp. 17, 12090–12108 (2009).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (7)

Y. Zhao, M. Heid, J. Rigas, and N. Lütkenhaus, “Asymptotic security of binary modulated continuous-variable quantum key distribution under collective attacks,” Phys. Rev. A 79, 012307 (2009).
[CrossRef]

B. Qi, L. L. Huang, L. Qian, and H. K. Lo, “Experimental study on the Gaussian-modulated coherent-state quantum key distribution over standard telecommunication fibers,” Phys. Rev. A 76, 052323 (2007).
[CrossRef]

J. Lodewyck, M. Bloch, R. Garcia-Patron, S. Fossier, E. Karpov, E. Diamanti, T. Debuisschert, N. J. Cerf, R. Tualle-Brouri, S. W. McLaughlin, and P. Grangier, “Quantum key distribution over 25 km with an all-fiber continuous-variable system,” Phys. Rev. A 76, 042305 (2007).
[CrossRef]

N. J. Cerf, M. Lévy, and G. Van Assche, “Quantum distribution of Gaussian keys using squeezed states,” Phys. Rev. A 63, 052311 (2001).
[CrossRef]

T. Symul, D.J. Alton, S. M. Assad, A. M. Lance, C. Weedbrook, T. C. Ralph, and P. K. Lam, “Experimental demonstration of post-selection-based continuous-variable quantum key distribution in the presence of Gaussian noise,” Phys. Rev. A 76, 030303(R) (2007).
[CrossRef]

R. Namiki and T. Hirano, “Efficient-phase-encoding protocols for continuous-variable quantum key distribution using coherent states and postselection,” Phys. Rev. A 74, 032302 (2006).
[CrossRef]

M. Heid and N. Lütkenhaus, “Security of coherent-state quantum cryptography in the presence of Gaussian noise,” Phys. Rev. A 76, 022313 (2007).
[CrossRef]

Phys. Rev. Lett. (7)

A. Leverrier and P. Grangier, “Unconditional security proof of long-distance continuous-variable quantum key distribution with discrete modulation,” Phys. Rev. Lett. 102, 180504 (2009).
[CrossRef] [PubMed]

F. Grosshans, “Collective attacks and unconditional security in continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020504 (2005).
[CrossRef] [PubMed]

M. Navascués and A. Acín, “Security bounds for continuous variable quantum key distribution,” Phys. Rev. Lett. 94, 020505 (2005).
[CrossRef] [PubMed]

R. García-Patrón and N. J. Cerf, “Unconditional optimality of gaussian attacks against continuous-variable quantum key distribution,” Phys. Rev. Lett. 97, 190503 (2006).
[CrossRef] [PubMed]

M. Navascués, F. Grosshans, and A. Acín, “Optimality of Gaussian attacks in continuous-variable quantum cryptography,” Phys. Rev. Lett. 97, 190502 (2006).
[CrossRef] [PubMed]

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67, 661–663 (1991).
[CrossRef] [PubMed]

A. M. Lance, T. Symul, V. Sharma, C. Weedbrook, T. C. Ralph, and P. K. Lam, “No-switching quantum key distribution using broadband modulated coherent light,” Phys. Rev. Lett. 95, 180503 (2005).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

S. L. Braunstein and P. Van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[CrossRef]

Other (3)

F. Grosshans and P. Grangier, “Reverse reconciliation protocols for quantum cryptography with continuous variables,” http://www.arxiv.org/abs/quant-ph/0204127v1.

M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, (Cambridge University Press, UK, 2000).

C. H. Bennett and G. Grassard, “Quantum cryptography: public key distribution and coin tossing,” in Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing (IEEE, Newyork, 1984), 175–179.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1.

Conceptual schematic for (a) quadrature phase-shift keyed (QPSK) signaling, with |αi〉 chosen equiprobably and (b) effect of channel, where ρB |(|α 1〉) denotes Bob’s received quantum state conditioned on Alice sending |α 1〉. Channel loss causes an attenuation of signal amplitude. The increase in diameter indicates schematically noise that is potentially added by Eve or the channel. (c-top) Final LO spectrum before homodyne detection. (c-bottom) Final signal spectrum before homodyne detection.

Fig. 2.
Fig. 2.

Schematic of experiment, with abbreviations defined in text.

Fig. 3.
Fig. 3.

Tomography data with Gaussian fit

Metrics