Abstract

Tapered optical fibers offer easy access to the evanescent field of their guided modes which is ideal for sensing applications. We introduce a soft-landing technique utilizing a linear Paul trap to select and place a single microparticle on the surface of a tapered optical fiber. This approach allows on-demand functionalization of fragile nanophotonic components with arbitrary particles, e.g., for advanced nanosensors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Brambilla, V. Finazzi, and D. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258- 2263 (2004), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-10-2258.
    [CrossRef] [PubMed]
  2. F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 11952-11958 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-11952.
    [CrossRef] [PubMed]
  3. K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence," Opt. Express 15, 5431-5438 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-9-5431.
    [CrossRef] [PubMed]
  4. J. Corres, J. Bravo, I. Matias, and F. Arregui, "Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms," IEEE Photon. Technol. Lett. 18, 935 (2006).
    [CrossRef]
  5. J. Villatoro, and D. Monzon-Hernandez, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-13-5087.
    [CrossRef] [PubMed]
  6. M. Gregor, R. Henze, T. Schroder, and O. Benson, "On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator," Appl. Phys. Lett. 95, 153110 (2009).
    [CrossRef]
  7. P. E. Barclay, C. Santori, K. Fu, R. G. Beausoleil, and O. Painter, "Coherent interference effects in a nano-assembled diamond NV center cavity-QED system," Opt. Express 17, 8081 (2009), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-10-8081.
    [CrossRef] [PubMed]
  8. W. Paul, "Electromagnetic traps for charged and neutral particles," Rev. Mod. Phys. 62, 531 (1990).
  9. W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
    [CrossRef]
  10. F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
    [CrossRef]
  11. J. Cirac and P. Zoller, "Quantum Computations with Cold Trapped Ions," Phys. Rev. Lett. 74, 4091 (1995).
    [CrossRef] [PubMed]
  12. W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009).
    [CrossRef]
  13. S. Schlemmer, J. Illemann, S. Wellert, and D. Gerlich, "Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap," J. Appl. Phys. 90, 5410 (2001).
    [CrossRef]
  14. S. Arnold and L. Folan, "Fluorescence spectrometer for a single electrodynamically levitated microparticle," Rev. Sci. Instrum. 57, 2250 (1986).
    [CrossRef]
  15. J. D. Prestage, G. J. Dick, and L. Maleki, "New ion trap for frequency standard applications," J. Appl. Phys. 66, 1013 (1989).
    [CrossRef]
  16. H. C. Nagerl,W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-608 (1998).
    [CrossRef]
  17. M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Ionic crystals in a linear Paul trap," Phys. Rev. A 45, 6493 (1992).
    [CrossRef] [PubMed]
  18. D. Kielpinski, C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature 417, 709 (2002).
    [CrossRef] [PubMed]
  19. S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, "Optimization of segmented linear Paul traps and transport of stored particles," Fortschr. Phys. 54, 648-665 (2006).
    [CrossRef]
  20. M. Nasse and C. Foot, "Influence of background pressure on the stability region of a Paul trap," European Journal of Physics 22, 563-573 (2001).
    [CrossRef]
  21. S. J. Gaskell, "Electrospray: Principles and Practice," Journal of Mass Spectrometry 32, 677-688 (1997).
    [CrossRef]
  22. P. Kebarle and L. Tang, "From Ions in Solution to Ions in the Gas Phase-The Mechanism of Electrospray Mass Spectrometry," Analytical Chemistry 65, 972 (1993).
    [CrossRef]
  23. M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-15-3521.
    [CrossRef] [PubMed]
  24. J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006)
    [CrossRef]
  25. F. Orucevic, V. Lefevre-Seguin, and J. Hare, "Transmittance and near-field characterization of sub-wavelength tapered optical fibers," Opt. Express 15, 13624-13629 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-21-13624.
    [CrossRef] [PubMed]
  26. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, "Polarization-discriminated spectra of a fiber-microsphere system," Appl. Phys. Lett. 89, 121107 (2006), URL http://link.aip.org/link/?APL/89/121107/1.
    [CrossRef]
  27. URL www.physik.hu-berlin.de/nano/movie.
  28. T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo,T. H. Oosterkamp, and R. Hanson, "Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center," Appl. Phys. Lett. 94, 173104 (2009),URL http://link.aip.org/link/?APL/94/173104/1.
    [CrossRef]
  29. E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, "Nano-manipulation of diamond-based single photon sources", arXiv:0905.2784v1 (2009), URL http://arxiv.org/abs/0905.2784v1.
  30. M. Barth, N. Nusse, B. Lochel,and O. Benson, "Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity", Opt. Lett. 34, 1108-1110 (2009), URL http://ol.osa.org/abstract.cfm?URI=ol-34-7-1108.
    [CrossRef] [PubMed]
  31. I. D. Chremmos and N. K. Uzunoglu, "Integral equation analysis of scattering by a spherical microparticle coupled to a subwavelength-diameter wire waveguide," J. Opt. Soc. Am. A 23, 461-467 (2006), URL http://josaa.osa.org/abstract.cfm?URI=josaa-23-2-461.
    [CrossRef]
  32. J. Bures and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A 16, 1992-1996 (1999), URL http://josaa.osa.org/abstract.cfm?URI=josaa-16-8-1992.
    [CrossRef]

2009

M. Gregor, R. Henze, T. Schroder, and O. Benson, "On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator," Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009).
[CrossRef]

2006

J. Corres, J. Bravo, I. Matias, and F. Arregui, "Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms," IEEE Photon. Technol. Lett. 18, 935 (2006).
[CrossRef]

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, "Optimization of segmented linear Paul traps and transport of stored particles," Fortschr. Phys. 54, 648-665 (2006).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006)
[CrossRef]

2003

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

2002

D. Kielpinski, C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature 417, 709 (2002).
[CrossRef] [PubMed]

2001

M. Nasse and C. Foot, "Influence of background pressure on the stability region of a Paul trap," European Journal of Physics 22, 563-573 (2001).
[CrossRef]

S. Schlemmer, J. Illemann, S. Wellert, and D. Gerlich, "Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap," J. Appl. Phys. 90, 5410 (2001).
[CrossRef]

1998

H. C. Nagerl,W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-608 (1998).
[CrossRef]

1997

S. J. Gaskell, "Electrospray: Principles and Practice," Journal of Mass Spectrometry 32, 677-688 (1997).
[CrossRef]

1995

J. Cirac and P. Zoller, "Quantum Computations with Cold Trapped Ions," Phys. Rev. Lett. 74, 4091 (1995).
[CrossRef] [PubMed]

1993

P. Kebarle and L. Tang, "From Ions in Solution to Ions in the Gas Phase-The Mechanism of Electrospray Mass Spectrometry," Analytical Chemistry 65, 972 (1993).
[CrossRef]

1992

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Ionic crystals in a linear Paul trap," Phys. Rev. A 45, 6493 (1992).
[CrossRef] [PubMed]

1990

W. Paul, "Electromagnetic traps for charged and neutral particles," Rev. Mod. Phys. 62, 531 (1990).

1989

J. D. Prestage, G. J. Dick, and L. Maleki, "New ion trap for frequency standard applications," J. Appl. Phys. 66, 1013 (1989).
[CrossRef]

1986

S. Arnold and L. Folan, "Fluorescence spectrometer for a single electrodynamically levitated microparticle," Rev. Sci. Instrum. 57, 2250 (1986).
[CrossRef]

Arnold, S.

S. Arnold and L. Folan, "Fluorescence spectrometer for a single electrodynamically levitated microparticle," Rev. Sci. Instrum. 57, 2250 (1986).
[CrossRef]

Arregui, F.

J. Corres, J. Bravo, I. Matias, and F. Arregui, "Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms," IEEE Photon. Technol. Lett. 18, 935 (2006).
[CrossRef]

Becher, C.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

Bechter, W.

H. C. Nagerl,W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-608 (1998).
[CrossRef]

Benson, O.

M. Gregor, R. Henze, T. Schroder, and O. Benson, "On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator," Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

Bergquist, J. C.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Ionic crystals in a linear Paul trap," Phys. Rev. A 45, 6493 (1992).
[CrossRef] [PubMed]

Blatt, R.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

H. C. Nagerl,W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-608 (1998).
[CrossRef]

Bravo, J.

J. Corres, J. Bravo, I. Matias, and F. Arregui, "Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms," IEEE Photon. Technol. Lett. 18, 935 (2006).
[CrossRef]

Cirac, J.

J. Cirac and P. Zoller, "Quantum Computations with Cold Trapped Ions," Phys. Rev. Lett. 74, 4091 (1995).
[CrossRef] [PubMed]

Corres, J.

J. Corres, J. Bravo, I. Matias, and F. Arregui, "Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms," IEEE Photon. Technol. Lett. 18, 935 (2006).
[CrossRef]

Deasy, K.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006)
[CrossRef]

Delaney, M. J.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Deuschle, T.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

Dick, G. J.

J. D. Prestage, G. J. Dick, and L. Maleki, "New ion trap for frequency standard applications," J. Appl. Phys. 66, 1013 (1989).
[CrossRef]

Diddams, S. A.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Donley, E. A.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Eschner, J.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

H. C. Nagerl,W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-608 (1998).
[CrossRef]

Fickler, R.

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009).
[CrossRef]

Folan, L.

S. Arnold and L. Folan, "Fluorescence spectrometer for a single electrodynamically levitated microparticle," Rev. Sci. Instrum. 57, 2250 (1986).
[CrossRef]

Foot, C.

M. Nasse and C. Foot, "Influence of background pressure on the stability region of a Paul trap," European Journal of Physics 22, 563-573 (2001).
[CrossRef]

Fortier, T. M.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Gaskell, S. J.

S. J. Gaskell, "Electrospray: Principles and Practice," Journal of Mass Spectrometry 32, 677-688 (1997).
[CrossRef]

Gerlich, D.

S. Schlemmer, J. Illemann, S. Wellert, and D. Gerlich, "Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap," J. Appl. Phys. 90, 5410 (2001).
[CrossRef]

Gilligan, J. M.

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Ionic crystals in a linear Paul trap," Phys. Rev. A 45, 6493 (1992).
[CrossRef] [PubMed]

Gregor, M.

M. Gregor, R. Henze, T. Schroder, and O. Benson, "On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator," Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

Gulde, S.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

Haffner, H.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

Hansel, W.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

Heavner, T. P.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Henze, R.

M. Gregor, R. Henze, T. Schroder, and O. Benson, "On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator," Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

Hollberg, L.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Illemann, J.

S. Schlemmer, J. Illemann, S. Wellert, and D. Gerlich, "Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap," J. Appl. Phys. 90, 5410 (2001).
[CrossRef]

Itano, W. M.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Ionic crystals in a linear Paul trap," Phys. Rev. A 45, 6493 (1992).
[CrossRef] [PubMed]

Jefferts, S. R.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Kebarle, P.

P. Kebarle and L. Tang, "From Ions in Solution to Ions in the Gas Phase-The Mechanism of Electrospray Mass Spectrometry," Analytical Chemistry 65, 972 (1993).
[CrossRef]

Kielpinski, D.

D. Kielpinski, C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature 417, 709 (2002).
[CrossRef] [PubMed]

Kim, K.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Lancaster, G. P. T.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

Levi, F.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Linke, N. M.

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009).
[CrossRef]

Maleki, L.

J. D. Prestage, G. J. Dick, and L. Maleki, "New ion trap for frequency standard applications," J. Appl. Phys. 66, 1013 (1989).
[CrossRef]

Matias, I.

J. Corres, J. Bravo, I. Matias, and F. Arregui, "Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms," IEEE Photon. Technol. Lett. 18, 935 (2006).
[CrossRef]

Meijer, J.

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009).
[CrossRef]

Monroe, C.

D. Kielpinski, C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature 417, 709 (2002).
[CrossRef] [PubMed]

Morrissey, M. J.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006)
[CrossRef]

Nagerl, H. C.

H. C. Nagerl,W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-608 (1998).
[CrossRef]

Nasse, M.

M. Nasse and C. Foot, "Influence of background pressure on the stability region of a Paul trap," European Journal of Physics 22, 563-573 (2001).
[CrossRef]

Nic Chormaic, S. G.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006)
[CrossRef]

O’Shea, D. G.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006)
[CrossRef]

Oskay, W. H.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Parker, T. E.

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Paul, W.

W. Paul, "Electromagnetic traps for charged and neutral particles," Rev. Mod. Phys. 62, 531 (1990).

Poschinger, U.

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, "Optimization of segmented linear Paul traps and transport of stored particles," Fortschr. Phys. 54, 648-665 (2006).
[CrossRef]

Prestage, J. D.

J. D. Prestage, G. J. Dick, and L. Maleki, "New ion trap for frequency standard applications," J. Appl. Phys. 66, 1013 (1989).
[CrossRef]

Raizen, M. G.

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Ionic crystals in a linear Paul trap," Phys. Rev. A 45, 6493 (1992).
[CrossRef] [PubMed]

Riebe, M.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

Roos, C.

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

Schlemmer, S.

S. Schlemmer, J. Illemann, S. Wellert, and D. Gerlich, "Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap," J. Appl. Phys. 90, 5410 (2001).
[CrossRef]

Schmidt-Kaler, F.

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009).
[CrossRef]

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, "Optimization of segmented linear Paul traps and transport of stored particles," Fortschr. Phys. 54, 648-665 (2006).
[CrossRef]

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

H. C. Nagerl,W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-608 (1998).
[CrossRef]

Schnitzler, W.

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009).
[CrossRef]

Schroder, T.

M. Gregor, R. Henze, T. Schroder, and O. Benson, "On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator," Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

Schulz, S.

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, "Optimization of segmented linear Paul traps and transport of stored particles," Fortschr. Phys. 54, 648-665 (2006).
[CrossRef]

Shortt, B. J.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006)
[CrossRef]

Singer, K.

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009).
[CrossRef]

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, "Optimization of segmented linear Paul traps and transport of stored particles," Fortschr. Phys. 54, 648-665 (2006).
[CrossRef]

Tang, L.

P. Kebarle and L. Tang, "From Ions in Solution to Ions in the Gas Phase-The Mechanism of Electrospray Mass Spectrometry," Analytical Chemistry 65, 972 (1993).
[CrossRef]

Ward, J. M.

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006)
[CrossRef]

Wellert, S.

S. Schlemmer, J. Illemann, S. Wellert, and D. Gerlich, "Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap," J. Appl. Phys. 90, 5410 (2001).
[CrossRef]

Wineland, D. J.

D. Kielpinski, C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature 417, 709 (2002).
[CrossRef] [PubMed]

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Ionic crystals in a linear Paul trap," Phys. Rev. A 45, 6493 (1992).
[CrossRef] [PubMed]

Zoller, P.

J. Cirac and P. Zoller, "Quantum Computations with Cold Trapped Ions," Phys. Rev. Lett. 74, 4091 (1995).
[CrossRef] [PubMed]

Analytical Chemistry

P. Kebarle and L. Tang, "From Ions in Solution to Ions in the Gas Phase-The Mechanism of Electrospray Mass Spectrometry," Analytical Chemistry 65, 972 (1993).
[CrossRef]

Appl. Phys. B

F. Schmidt-Kaler, H. Haffner, S. Gulde, M. Riebe, G. P. T. Lancaster, T. Deuschle, C. Becher, W. Hansel, J. Eschner, C. Roos, and R. Blatt, "How to realize a universal quantum gate with trapped ions," Appl. Phys. B 77, 789-796 (2003).
[CrossRef]

H. C. Nagerl,W. Bechter, J. Eschner, F. Schmidt-Kaler, and R. Blatt, "Ion strings for quantum gates," Appl. Phys. B 66, 603-608 (1998).
[CrossRef]

Appl. Phys. Lett.

M. Gregor, R. Henze, T. Schroder, and O. Benson, "On-demand positioning of a preselected quantum emitter on a fiber-coupled toroidal microresonator," Appl. Phys. Lett. 95, 153110 (2009).
[CrossRef]

European Journal of Physics

M. Nasse and C. Foot, "Influence of background pressure on the stability region of a Paul trap," European Journal of Physics 22, 563-573 (2001).
[CrossRef]

Fortschr. Phys.

S. Schulz, U. Poschinger, K. Singer, and F. Schmidt-Kaler, "Optimization of segmented linear Paul traps and transport of stored particles," Fortschr. Phys. 54, 648-665 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Corres, J. Bravo, I. Matias, and F. Arregui, "Nonadiabatic tapered single-mode fiber coated with humidity sensitive nanofilms," IEEE Photon. Technol. Lett. 18, 935 (2006).
[CrossRef]

J. Appl. Phys.

J. D. Prestage, G. J. Dick, and L. Maleki, "New ion trap for frequency standard applications," J. Appl. Phys. 66, 1013 (1989).
[CrossRef]

S. Schlemmer, J. Illemann, S. Wellert, and D. Gerlich, "Nondestructive high-resolution and absolute mass determination of single charged particles in a three-dimensional quadrupole trap," J. Appl. Phys. 90, 5410 (2001).
[CrossRef]

Journal of Mass Spectrometry

S. J. Gaskell, "Electrospray: Principles and Practice," Journal of Mass Spectrometry 32, 677-688 (1997).
[CrossRef]

Nature

D. Kielpinski, C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature 417, 709 (2002).
[CrossRef] [PubMed]

Phys. Rev. A

M. G. Raizen, J. M. Gilligan, J. C. Bergquist, W. M. Itano, and D. J. Wineland, "Ionic crystals in a linear Paul trap," Phys. Rev. A 45, 6493 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett.

J. Cirac and P. Zoller, "Quantum Computations with Cold Trapped Ions," Phys. Rev. Lett. 74, 4091 (1995).
[CrossRef] [PubMed]

W. Schnitzler, N. M. Linke, R. Fickler, J. Meijer, F. Schmidt-Kaler, and K. Singer, "Deterministic Ultracold Ion Source Targeting the Heisenberg Limit," Phys. Rev. Lett. 102, 1-4 (2009).
[CrossRef]

W. H. Oskay, S. A. Diddams, E. A. Donley, T. M. Fortier, T. P. Heavner, L. Hollberg, W. M. Itano, S. R. Jefferts, M. J. Delaney, K. Kim, F. Levi, T. E. Parker, and J. C. Bergquist, "Single-Atom Optical Clock with High Accuracy," Phys. Rev. Lett. 97, 1-4 (2006).
[CrossRef]

Rev. Mod. Phys.

W. Paul, "Electromagnetic traps for charged and neutral particles," Rev. Mod. Phys. 62, 531 (1990).

Rev. Sci. Instrum.

S. Arnold and L. Folan, "Fluorescence spectrometer for a single electrodynamically levitated microparticle," Rev. Sci. Instrum. 57, 2250 (1986).
[CrossRef]

J. M. Ward, D. G. O’Shea, B. J. Shortt, M. J. Morrissey, K. Deasy and S. G. Nic Chormaic, "Heat-and-pull rig for fiber taper fabrication," Rev. Sci. Instrum. 77, 083105 (2006)
[CrossRef]

Other

F. Orucevic, V. Lefevre-Seguin, and J. Hare, "Transmittance and near-field characterization of sub-wavelength tapered optical fibers," Opt. Express 15, 13624-13629 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-21-13624.
[CrossRef] [PubMed]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, "Polarization-discriminated spectra of a fiber-microsphere system," Appl. Phys. Lett. 89, 121107 (2006), URL http://link.aip.org/link/?APL/89/121107/1.
[CrossRef]

URL www.physik.hu-berlin.de/nano/movie.

T. van der Sar, E. C. Heeres, G. M. Dmochowski, G. de Lange, L. Robledo,T. H. Oosterkamp, and R. Hanson, "Nanopositioning of a diamond nanocrystal containing a single nitrogen-vacancy defect center," Appl. Phys. Lett. 94, 173104 (2009),URL http://link.aip.org/link/?APL/94/173104/1.
[CrossRef]

E. Ampem-Lassen, D. A. Simpson, B. C. Gibson, S. Trpkovski, F. M. Hossain, S. T. Huntington, K. Ganesan, L. C. L. Hollenberg, and S. Prawer, "Nano-manipulation of diamond-based single photon sources", arXiv:0905.2784v1 (2009), URL http://arxiv.org/abs/0905.2784v1.

M. Barth, N. Nusse, B. Lochel,and O. Benson, "Controlled coupling of a single-diamond nanocrystal to a photonic crystal cavity", Opt. Lett. 34, 1108-1110 (2009), URL http://ol.osa.org/abstract.cfm?URI=ol-34-7-1108.
[CrossRef] [PubMed]

I. D. Chremmos and N. K. Uzunoglu, "Integral equation analysis of scattering by a spherical microparticle coupled to a subwavelength-diameter wire waveguide," J. Opt. Soc. Am. A 23, 461-467 (2006), URL http://josaa.osa.org/abstract.cfm?URI=josaa-23-2-461.
[CrossRef]

J. Bures and R. Ghosh, "Power density of the evanescent field in the vicinity of a tapered fiber," J. Opt. Soc. Am. A 16, 1992-1996 (1999), URL http://josaa.osa.org/abstract.cfm?URI=josaa-16-8-1992.
[CrossRef]

M. Sumetsky, Y. Dulashko, and A. Hale, "Fabrication and study of bent and coiled free silica nanowires: Self-coupling microloop optical interferometer," Opt. Express 12, 3521-3531 (2004), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-15-3521.
[CrossRef] [PubMed]

P. E. Barclay, C. Santori, K. Fu, R. G. Beausoleil, and O. Painter, "Coherent interference effects in a nano-assembled diamond NV center cavity-QED system," Opt. Express 17, 8081 (2009), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-17-10-8081.
[CrossRef] [PubMed]

J. Villatoro, and D. Monzon-Hernandez, "Fast detection of hydrogen with nano fiber tapers coated with ultra thin palladium layers," Opt. Express 13, 5087-5092 (2005), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-13-13-5087.
[CrossRef] [PubMed]

G. Brambilla, V. Finazzi, and D. Richardson, "Ultra-low-loss optical fiber nanotapers," Opt. Express 12, 2258- 2263 (2004), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-12-10-2258.
[CrossRef] [PubMed]

F. Warken, E. Vetsch, D. Meschede, M. Sokolowski, and A. Rauschenbeutel, "Ultra-sensitive surface absorption spectroscopy using sub-wavelength diameter optical fibers," Opt. Express 15, 11952-11958 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-19-11952.
[CrossRef] [PubMed]

K. P. Nayak, P. N. Melentiev, M. Morinaga, F. L. Kien, V. I. Balykin, and K. Hakuta, "Optical nanofiber as an efficient tool for manipulating and probing atomic fluorescence," Opt. Express 15, 5431-5438 (2007), URL http://www.opticsexpress.org/abstract.cfm?URI=oe-15-9-5431.
[CrossRef] [PubMed]

Supplementary Material (4)

» Media 1: AVI (3758 KB)     
» Media 2: AVI (2599 KB)     
» Media 3: AVI (3677 KB)     
» Media 4: AVI (1247 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(Color online) Schematic of the Paul trap: The trap consists of two rf-electrodes and two dc-electrodes. The dc-electrodes are subdivided into twelve segments with lengths of 2, 5 and 7mm. The total length of the trap is 70mm. Segments 1–3 constitute the spectroscopy region, where the fluorescence measurements and the deposition on the optical fiber taper are performed. Loading of the trap occurs from the righthand side (segments 10–12.) The segmentation allows confinement of several particles at once, isolation of single particles, and their transfer within the trap.

Fig. 2.
Fig. 2.

(Color online) Schematic of optical setup: solid (green) and dashed (red) lines indicate the optical paths for the excitation laser and fluorescence detection, respectively. By flipping either mirror FM1 or FM2 it is possible to excite and detect particles hovering in the trap through the microscope objective or to measure deposited particles directly through the optical fiber taper. FM3 allows measurement of the change in transmission via a photodiode as a particle is placed onto the taper.

Fig. 3.
Fig. 3.

(a) Particle after electrospray injection trapped between electrodes (Media 1), (b) particle moved into spectroscopy region of the trap (Media 2), (c) optical fiber taper is uncovered and moved into trap (Media 3), (d) particle has landed onto fiber taper (Media 4). Annotation: i. trapped particle, ii. microscope objective, iii. cover for optical taper, iv. segmented electrode, v. high-voltage electrode, vi. holder for electrodes, vii. fiber optical taper (seen due to light scattered out of a guided fiber mode), viii. U-shaped holder for optical fiber taper. [27]

Fig. 4.
Fig. 4.

(a) Fluorescence spectrum of a dye-doped particle trapped in the spectroscopy region of the Paul trap collected by the microscope objective, (b) spectrum of the same particle after deposition onto a fiber taper of 700nm in diameter collected via the same fiber. The excitation power was Pext =30µW at 514nm.

Fig. 5.
Fig. 5.

Four particles placed evenly spaced onto a fiber taper. The distance between the particles on the taper is roughly 2mm.

Fig. 6.
Fig. 6.

(a) Decrease in transmission at 532nm while landing a single 1.5µm-sized particle consisting of a cluster of polystyrene beads on a 850nm diameter taper. The transmission is normalized to the transmission through the taper before the particle is placed (corresponds to 1.0). The value of 0 corresponds to the transmitted signal when the laser is turned off. (b) Microscope image of the landed particle.

Fig. 7.
Fig. 7.

(Color online) Results of FDTD simulation for the transmission for the HE11 mode at 532nm in a glass cylinder dt =850nm of length 100µm piercing a polystyrene sphere of diameter ds . The transmission through the glass cylinder is given by the time averaged Poynting vector integrated across the end facet of the cylinder and normalized by the power of the seeded mode. The unit cell size of the simulation is 33nm and perfectly matched layers are used as boundary condition.

Metrics