Abstract

By magnetron controlled sputtering system, a new nanostructured metastable monoclinic phase VO2 (B) thin film has been fabricated. The testing result shows that this nanostructured VO2 (B) thin film has high temperature coefficient of resistance (TCR) of −7%/K. Scanning electron microscopy measurement shows that the average grain diameter of the VO2 (B) crystallite is between 100 and 250 nm. After post annealed, VO2 (B) crystallite is changed into monoclinic (M) phase VO2 (M) crystallite with the average grain diameter between 20 and 50nm. A set up of testing the thin film switching time is established. The test result shows the switching time is about 50 ms. With the nanostructured VO2 (B) and VO2 (M) thin films, optical switches and high sensitivity detectors will be presented.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. L. Zhao and G. R. Han, “Study of the electrical properties of sol-gel-derived titanium-vanadium oxide films,” Int. J. Mod. Phys. B 16(28 & 29), 4465–4468 (2002).
    [CrossRef]
  2. S. Deki, Y. Aoi, and A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Sci. 32(16), 4269–4273 (1997).
    [CrossRef]
  3. M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H.-J. Freund, and R. Schlögl, “Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation,” Catal. Lett. 81(3/4), 219 (2002).
    [CrossRef]
  4. S. Sakata, P. O. Vaccaro, S. Yamaoka, I. Umezu, and A. Sugimura, “Selective oxidation of vanadium thin film surfaces using an atomic force microscope,” Conference on Optoelectronic & Microelectronic Materials and Devices, Proceedings, COMMAD, 419–421(1999).
  5. K. Inumaru, M. Misono, and T. Okuhara, “Structure and catalysis of vanadium oxide overlayers on oxide supports,” Appl. Catal. A Gen. 149(1), 133–149 (1997).
    [CrossRef]
  6. J. P. Schreckenbach and P. Strauch, “Microstructure study of amorphous vanadium oxide films,” Appl. Surf. Sci. 143(1-4), 6–10 (1999).
    [CrossRef]
  7. Q. H. Wu, A. Thissen, W. Jaegermann, and M. L. Liu, “Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface,” Appl. Surf. Sci. 236(1-4), 473–478 (2004).
    [CrossRef]
  8. H. Miyazaki, M. Kamei, and I. Yasui, “Vanadium oxide thin films depostied onto Cu buffer layer by RF magnetron sputtering,” Thin Solid Films 343–344, 168–170 (1999).
    [CrossRef]
  9. M. B. Sahana, G. N. Subbanna, and S. A. Shivashankar, “Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metal organic chemical vapor deposition,” J. Appl. Phys. 92(11), 6495–6504 (2002).
    [CrossRef]
  10. S. D. Hansen and C. R. Aita, “Low temperature reactive sputter deposition of vanadium oxide,” J. Vac. Sci. Technol. A 3(3), 660–663 (1985).
    [CrossRef]
  11. S. H. Chen, H. Ma, J. Dai, and X. J. Yi, “Nanostructured vanadium dioxide thin films with low phase transition temperature,” Appl. Phys. Lett. 90(10), 101117 (2007).
    [CrossRef]
  12. N. Fieldhouse, S. M. Pursel, R. Carey, M. W. Horn, and S. S. N. Bharadwaja, “Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering,” J. Vac. Sci. Technol. A 27(4), 951–955 (2009).
    [CrossRef]
  13. C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn, and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A 27(4), 956–961 (2009).
    [CrossRef]
  14. C. Venkatasubramanian, M. W. Horn, and S. Ashok, “Ion implantation studies on VOx films prepared by pulsed dc reactive sputtering,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1476–1479 (2009).
    [CrossRef]
  15. B. D. Gauntt, E. C. Dickey, and M. W. Horn, “Stoichiometry and microstructural effects on electrical conduction in pulsed dc sputtered vanadium oxide thin films,” J. Mater. Res. 24(4), 1590–1599 (2009).
    [CrossRef]
  16. H. Jerominek, F. Picard, and D. Vincent, “Vanadium oxide films for optical switching and detection,” Opt. Eng. 32(9), 2092–2099 (1993).
    [CrossRef]
  17. L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, H. F. Neff, and R. C. S. Freire, “A Hysteresis Model for a Vanadium Dioxide Transition-Edge Mirobolometer,” IEEE Trans. Instrum. Meas. 50(4), 1030–1035 (2001).
    [CrossRef]
  18. A. Leone, A. M. Trione, and F. Junga, “Alteration in electrical and infrared switching properties of vanadium oxides due to proton irradiation,” IEEE Trans. Nucl. Sci. 37(6), 1739 (1990).
    [CrossRef]
  19. F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
    [CrossRef]
  20. G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
    [CrossRef]
  21. A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

2009 (4)

N. Fieldhouse, S. M. Pursel, R. Carey, M. W. Horn, and S. S. N. Bharadwaja, “Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering,” J. Vac. Sci. Technol. A 27(4), 951–955 (2009).
[CrossRef]

C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn, and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A 27(4), 956–961 (2009).
[CrossRef]

C. Venkatasubramanian, M. W. Horn, and S. Ashok, “Ion implantation studies on VOx films prepared by pulsed dc reactive sputtering,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1476–1479 (2009).
[CrossRef]

B. D. Gauntt, E. C. Dickey, and M. W. Horn, “Stoichiometry and microstructural effects on electrical conduction in pulsed dc sputtered vanadium oxide thin films,” J. Mater. Res. 24(4), 1590–1599 (2009).
[CrossRef]

2007 (1)

S. H. Chen, H. Ma, J. Dai, and X. J. Yi, “Nanostructured vanadium dioxide thin films with low phase transition temperature,” Appl. Phys. Lett. 90(10), 101117 (2007).
[CrossRef]

2005 (1)

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

2004 (2)

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[CrossRef]

Q. H. Wu, A. Thissen, W. Jaegermann, and M. L. Liu, “Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface,” Appl. Surf. Sci. 236(1-4), 473–478 (2004).
[CrossRef]

2002 (3)

M. B. Sahana, G. N. Subbanna, and S. A. Shivashankar, “Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metal organic chemical vapor deposition,” J. Appl. Phys. 92(11), 6495–6504 (2002).
[CrossRef]

G. L. Zhao and G. R. Han, “Study of the electrical properties of sol-gel-derived titanium-vanadium oxide films,” Int. J. Mod. Phys. B 16(28 & 29), 4465–4468 (2002).
[CrossRef]

M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H.-J. Freund, and R. Schlögl, “Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation,” Catal. Lett. 81(3/4), 219 (2002).
[CrossRef]

2001 (1)

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, H. F. Neff, and R. C. S. Freire, “A Hysteresis Model for a Vanadium Dioxide Transition-Edge Mirobolometer,” IEEE Trans. Instrum. Meas. 50(4), 1030–1035 (2001).
[CrossRef]

2000 (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[CrossRef]

1999 (2)

J. P. Schreckenbach and P. Strauch, “Microstructure study of amorphous vanadium oxide films,” Appl. Surf. Sci. 143(1-4), 6–10 (1999).
[CrossRef]

H. Miyazaki, M. Kamei, and I. Yasui, “Vanadium oxide thin films depostied onto Cu buffer layer by RF magnetron sputtering,” Thin Solid Films 343–344, 168–170 (1999).
[CrossRef]

1997 (2)

K. Inumaru, M. Misono, and T. Okuhara, “Structure and catalysis of vanadium oxide overlayers on oxide supports,” Appl. Catal. A Gen. 149(1), 133–149 (1997).
[CrossRef]

S. Deki, Y. Aoi, and A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Sci. 32(16), 4269–4273 (1997).
[CrossRef]

1993 (1)

H. Jerominek, F. Picard, and D. Vincent, “Vanadium oxide films for optical switching and detection,” Opt. Eng. 32(9), 2092–2099 (1993).
[CrossRef]

1990 (1)

A. Leone, A. M. Trione, and F. Junga, “Alteration in electrical and infrared switching properties of vanadium oxides due to proton irradiation,” IEEE Trans. Nucl. Sci. 37(6), 1739 (1990).
[CrossRef]

1985 (1)

S. D. Hansen and C. R. Aita, “Low temperature reactive sputter deposition of vanadium oxide,” J. Vac. Sci. Technol. A 3(3), 660–663 (1985).
[CrossRef]

Aita, C. R.

S. D. Hansen and C. R. Aita, “Low temperature reactive sputter deposition of vanadium oxide,” J. Vac. Sci. Technol. A 3(3), 660–663 (1985).
[CrossRef]

Allara, D. L.

C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn, and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A 27(4), 956–961 (2009).
[CrossRef]

Aoi, Y.

S. Deki, Y. Aoi, and A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Sci. 32(16), 4269–4273 (1997).
[CrossRef]

Ashok, S.

C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn, and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A 27(4), 956–961 (2009).
[CrossRef]

C. Venkatasubramanian, M. W. Horn, and S. Ashok, “Ion implantation studies on VOx films prepared by pulsed dc reactive sputtering,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1476–1479 (2009).
[CrossRef]

Bharadwaja, S. S. N.

N. Fieldhouse, S. M. Pursel, R. Carey, M. W. Horn, and S. S. N. Bharadwaja, “Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering,” J. Vac. Sci. Technol. A 27(4), 951–955 (2009).
[CrossRef]

Cabarcos, O. M.

C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn, and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A 27(4), 956–961 (2009).
[CrossRef]

Carey, R.

N. Fieldhouse, S. M. Pursel, R. Carey, M. W. Horn, and S. S. N. Bharadwaja, “Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering,” J. Vac. Sci. Technol. A 27(4), 951–955 (2009).
[CrossRef]

Cavalleri, A.

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

Chen, S. H.

S. H. Chen, H. Ma, J. Dai, and X. J. Yi, “Nanostructured vanadium dioxide thin films with low phase transition temperature,” Appl. Phys. Lett. 90(10), 101117 (2007).
[CrossRef]

Chong, H. H. W.

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

Cros, F.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[CrossRef]

Dai, J.

S. H. Chen, H. Ma, J. Dai, and X. J. Yi, “Nanostructured vanadium dioxide thin films with low phase transition temperature,” Appl. Phys. Lett. 90(10), 101117 (2007).
[CrossRef]

de Almeida, L. A. L.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, H. F. Neff, and R. C. S. Freire, “A Hysteresis Model for a Vanadium Dioxide Transition-Edge Mirobolometer,” IEEE Trans. Instrum. Meas. 50(4), 1030–1035 (2001).
[CrossRef]

Deep, G. S.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, H. F. Neff, and R. C. S. Freire, “A Hysteresis Model for a Vanadium Dioxide Transition-Edge Mirobolometer,” IEEE Trans. Instrum. Meas. 50(4), 1030–1035 (2001).
[CrossRef]

Deki, S.

S. Deki, Y. Aoi, and A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Sci. 32(16), 4269–4273 (1997).
[CrossRef]

Dickey, E. C.

B. D. Gauntt, E. C. Dickey, and M. W. Horn, “Stoichiometry and microstructural effects on electrical conduction in pulsed dc sputtered vanadium oxide thin films,” J. Mater. Res. 24(4), 1590–1599 (2009).
[CrossRef]

Fieldhouse, N.

N. Fieldhouse, S. M. Pursel, R. Carey, M. W. Horn, and S. S. N. Bharadwaja, “Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering,” J. Vac. Sci. Technol. A 27(4), 951–955 (2009).
[CrossRef]

Fourmaux, S.

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

Freire, R. C. S.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, H. F. Neff, and R. C. S. Freire, “A Hysteresis Model for a Vanadium Dioxide Transition-Edge Mirobolometer,” IEEE Trans. Instrum. Meas. 50(4), 1030–1035 (2001).
[CrossRef]

Freund, H.-J.

M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H.-J. Freund, and R. Schlögl, “Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation,” Catal. Lett. 81(3/4), 219 (2002).
[CrossRef]

Gauntt, B. D.

B. D. Gauntt, E. C. Dickey, and M. W. Horn, “Stoichiometry and microstructural effects on electrical conduction in pulsed dc sputtered vanadium oxide thin films,” J. Mater. Res. 24(4), 1590–1599 (2009).
[CrossRef]

Gavarri, J. R.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[CrossRef]

Glover, T. E.

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

Guinneton, F.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[CrossRef]

Han, G. R.

G. L. Zhao and G. R. Han, “Study of the electrical properties of sol-gel-derived titanium-vanadium oxide films,” Int. J. Mod. Phys. B 16(28 & 29), 4465–4468 (2002).
[CrossRef]

Hansen, S. D.

S. D. Hansen and C. R. Aita, “Low temperature reactive sputter deposition of vanadium oxide,” J. Vac. Sci. Technol. A 3(3), 660–663 (1985).
[CrossRef]

Heimann, P. A.

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

Horn, M. W.

B. D. Gauntt, E. C. Dickey, and M. W. Horn, “Stoichiometry and microstructural effects on electrical conduction in pulsed dc sputtered vanadium oxide thin films,” J. Mater. Res. 24(4), 1590–1599 (2009).
[CrossRef]

C. Venkatasubramanian, M. W. Horn, and S. Ashok, “Ion implantation studies on VOx films prepared by pulsed dc reactive sputtering,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1476–1479 (2009).
[CrossRef]

C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn, and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A 27(4), 956–961 (2009).
[CrossRef]

N. Fieldhouse, S. M. Pursel, R. Carey, M. W. Horn, and S. S. N. Bharadwaja, “Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering,” J. Vac. Sci. Technol. A 27(4), 951–955 (2009).
[CrossRef]

Inumaru, K.

K. Inumaru, M. Misono, and T. Okuhara, “Structure and catalysis of vanadium oxide overlayers on oxide supports,” Appl. Catal. A Gen. 149(1), 133–149 (1997).
[CrossRef]

Jaegermann, W.

Q. H. Wu, A. Thissen, W. Jaegermann, and M. L. Liu, “Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface,” Appl. Surf. Sci. 236(1-4), 473–478 (2004).
[CrossRef]

Jerominek, H.

H. Jerominek, F. Picard, and D. Vincent, “Vanadium oxide films for optical switching and detection,” Opt. Eng. 32(9), 2092–2099 (1993).
[CrossRef]

Junga, F.

A. Leone, A. M. Trione, and F. Junga, “Alteration in electrical and infrared switching properties of vanadium oxides due to proton irradiation,” IEEE Trans. Nucl. Sci. 37(6), 1739 (1990).
[CrossRef]

Kajinami, A.

S. Deki, Y. Aoi, and A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Sci. 32(16), 4269–4273 (1997).
[CrossRef]

Kamei, M.

H. Miyazaki, M. Kamei, and I. Yasui, “Vanadium oxide thin films depostied onto Cu buffer layer by RF magnetron sputtering,” Thin Solid Films 343–344, 168–170 (1999).
[CrossRef]

Kieffer, J. C.

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

Leone, A.

A. Leone, A. M. Trione, and F. Junga, “Alteration in electrical and infrared switching properties of vanadium oxides due to proton irradiation,” IEEE Trans. Nucl. Sci. 37(6), 1739 (1990).
[CrossRef]

Lima, A. M. N.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, H. F. Neff, and R. C. S. Freire, “A Hysteresis Model for a Vanadium Dioxide Transition-Edge Mirobolometer,” IEEE Trans. Instrum. Meas. 50(4), 1030–1035 (2001).
[CrossRef]

Liu, M. L.

Q. H. Wu, A. Thissen, W. Jaegermann, and M. L. Liu, “Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface,” Appl. Surf. Sci. 236(1-4), 473–478 (2004).
[CrossRef]

Ma, H.

S. H. Chen, H. Ma, J. Dai, and X. J. Yi, “Nanostructured vanadium dioxide thin films with low phase transition temperature,” Appl. Phys. Lett. 90(10), 101117 (2007).
[CrossRef]

Melzer, M.

M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H.-J. Freund, and R. Schlögl, “Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation,” Catal. Lett. 81(3/4), 219 (2002).
[CrossRef]

Misono, M.

K. Inumaru, M. Misono, and T. Okuhara, “Structure and catalysis of vanadium oxide overlayers on oxide supports,” Appl. Catal. A Gen. 149(1), 133–149 (1997).
[CrossRef]

Miyazaki, H.

H. Miyazaki, M. Kamei, and I. Yasui, “Vanadium oxide thin films depostied onto Cu buffer layer by RF magnetron sputtering,” Thin Solid Films 343–344, 168–170 (1999).
[CrossRef]

Neff, H. F.

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, H. F. Neff, and R. C. S. Freire, “A Hysteresis Model for a Vanadium Dioxide Transition-Edge Mirobolometer,” IEEE Trans. Instrum. Meas. 50(4), 1030–1035 (2001).
[CrossRef]

Okuhara, T.

K. Inumaru, M. Misono, and T. Okuhara, “Structure and catalysis of vanadium oxide overlayers on oxide supports,” Appl. Catal. A Gen. 149(1), 133–149 (1997).
[CrossRef]

Pergament, A.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[CrossRef]

Picard, F.

H. Jerominek, F. Picard, and D. Vincent, “Vanadium oxide films for optical switching and detection,” Opt. Eng. 32(9), 2092–2099 (1993).
[CrossRef]

Pursel, S. M.

N. Fieldhouse, S. M. Pursel, R. Carey, M. W. Horn, and S. S. N. Bharadwaja, “Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering,” J. Vac. Sci. Technol. A 27(4), 951–955 (2009).
[CrossRef]

Rini, M.

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

Sack-Kongehl, H.

M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H.-J. Freund, and R. Schlögl, “Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation,” Catal. Lett. 81(3/4), 219 (2002).
[CrossRef]

Sahana, M. B.

M. B. Sahana, G. N. Subbanna, and S. A. Shivashankar, “Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metal organic chemical vapor deposition,” J. Appl. Phys. 92(11), 6495–6504 (2002).
[CrossRef]

Sauques, L.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[CrossRef]

Schlögl, R.

M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H.-J. Freund, and R. Schlögl, “Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation,” Catal. Lett. 81(3/4), 219 (2002).
[CrossRef]

Schoenlein, R. W.

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

Schreckenbach, J. P.

J. P. Schreckenbach and P. Strauch, “Microstructure study of amorphous vanadium oxide films,” Appl. Surf. Sci. 143(1-4), 6–10 (1999).
[CrossRef]

Shivashankar, S. A.

M. B. Sahana, G. N. Subbanna, and S. A. Shivashankar, “Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metal organic chemical vapor deposition,” J. Appl. Phys. 92(11), 6495–6504 (2002).
[CrossRef]

Stefanovich, D.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[CrossRef]

Stefanovich, G.

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[CrossRef]

Strauch, P.

J. P. Schreckenbach and P. Strauch, “Microstructure study of amorphous vanadium oxide films,” Appl. Surf. Sci. 143(1-4), 6–10 (1999).
[CrossRef]

Subbanna, G. N.

M. B. Sahana, G. N. Subbanna, and S. A. Shivashankar, “Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metal organic chemical vapor deposition,” J. Appl. Phys. 92(11), 6495–6504 (2002).
[CrossRef]

Thissen, A.

Q. H. Wu, A. Thissen, W. Jaegermann, and M. L. Liu, “Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface,” Appl. Surf. Sci. 236(1-4), 473–478 (2004).
[CrossRef]

Trione, A. M.

A. Leone, A. M. Trione, and F. Junga, “Alteration in electrical and infrared switching properties of vanadium oxides due to proton irradiation,” IEEE Trans. Nucl. Sci. 37(6), 1739 (1990).
[CrossRef]

Urban, J.

M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H.-J. Freund, and R. Schlögl, “Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation,” Catal. Lett. 81(3/4), 219 (2002).
[CrossRef]

Valmalette, J. C.

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[CrossRef]

Venkatasubramanian, C.

C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn, and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A 27(4), 956–961 (2009).
[CrossRef]

C. Venkatasubramanian, M. W. Horn, and S. Ashok, “Ion implantation studies on VOx films prepared by pulsed dc reactive sputtering,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1476–1479 (2009).
[CrossRef]

Vincent, D.

H. Jerominek, F. Picard, and D. Vincent, “Vanadium oxide films for optical switching and detection,” Opt. Eng. 32(9), 2092–2099 (1993).
[CrossRef]

Weiss, K.

M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H.-J. Freund, and R. Schlögl, “Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation,” Catal. Lett. 81(3/4), 219 (2002).
[CrossRef]

Wu, Q. H.

Q. H. Wu, A. Thissen, W. Jaegermann, and M. L. Liu, “Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface,” Appl. Surf. Sci. 236(1-4), 473–478 (2004).
[CrossRef]

Yasui, I.

H. Miyazaki, M. Kamei, and I. Yasui, “Vanadium oxide thin films depostied onto Cu buffer layer by RF magnetron sputtering,” Thin Solid Films 343–344, 168–170 (1999).
[CrossRef]

Yi, X. J.

S. H. Chen, H. Ma, J. Dai, and X. J. Yi, “Nanostructured vanadium dioxide thin films with low phase transition temperature,” Appl. Phys. Lett. 90(10), 101117 (2007).
[CrossRef]

Zhao, G. L.

G. L. Zhao and G. R. Han, “Study of the electrical properties of sol-gel-derived titanium-vanadium oxide films,” Int. J. Mod. Phys. B 16(28 & 29), 4465–4468 (2002).
[CrossRef]

Appl. Catal. A Gen. (1)

K. Inumaru, M. Misono, and T. Okuhara, “Structure and catalysis of vanadium oxide overlayers on oxide supports,” Appl. Catal. A Gen. 149(1), 133–149 (1997).
[CrossRef]

Appl. Phys. Lett. (1)

S. H. Chen, H. Ma, J. Dai, and X. J. Yi, “Nanostructured vanadium dioxide thin films with low phase transition temperature,” Appl. Phys. Lett. 90(10), 101117 (2007).
[CrossRef]

Appl. Surf. Sci. (2)

J. P. Schreckenbach and P. Strauch, “Microstructure study of amorphous vanadium oxide films,” Appl. Surf. Sci. 143(1-4), 6–10 (1999).
[CrossRef]

Q. H. Wu, A. Thissen, W. Jaegermann, and M. L. Liu, “Photoelectron spectroscopy study of oxygen vacancy on vanadium oxides surface,” Appl. Surf. Sci. 236(1-4), 473–478 (2004).
[CrossRef]

Bull. Am. Phys. Soc. (1)

A. Cavalleri, M. Rini, H. H. W. Chong, S. Fourmaux, T. E. Glover, P. A. Heimann, J. C. Kieffer, and R. W. Schoenlein, “Band-selective measurements of electron dynamics in VO2 using femtosecond near-edge X-ray absorption,” Bull. Am. Phys. Soc. 95, 067405 (2005).

Catal. Lett. (1)

M. Melzer, J. Urban, H. Sack-Kongehl, K. Weiss, H.-J. Freund, and R. Schlögl, “Preparation of vanadium and vanadium oxide clusters by means of inert gas aggregation,” Catal. Lett. 81(3/4), 219 (2002).
[CrossRef]

IEEE Trans. Instrum. Meas. (1)

L. A. L. de Almeida, G. S. Deep, A. M. N. Lima, H. F. Neff, and R. C. S. Freire, “A Hysteresis Model for a Vanadium Dioxide Transition-Edge Mirobolometer,” IEEE Trans. Instrum. Meas. 50(4), 1030–1035 (2001).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

A. Leone, A. M. Trione, and F. Junga, “Alteration in electrical and infrared switching properties of vanadium oxides due to proton irradiation,” IEEE Trans. Nucl. Sci. 37(6), 1739 (1990).
[CrossRef]

Int. J. Mod. Phys. B (1)

G. L. Zhao and G. R. Han, “Study of the electrical properties of sol-gel-derived titanium-vanadium oxide films,” Int. J. Mod. Phys. B 16(28 & 29), 4465–4468 (2002).
[CrossRef]

J. Appl. Phys. (1)

M. B. Sahana, G. N. Subbanna, and S. A. Shivashankar, “Phase transformation and semiconductor-metal transition in thin films of VO2 deposited by low-pressure metal organic chemical vapor deposition,” J. Appl. Phys. 92(11), 6495–6504 (2002).
[CrossRef]

J. Mater. Res. (1)

B. D. Gauntt, E. C. Dickey, and M. W. Horn, “Stoichiometry and microstructural effects on electrical conduction in pulsed dc sputtered vanadium oxide thin films,” J. Mater. Res. 24(4), 1590–1599 (2009).
[CrossRef]

J. Mater. Sci. (1)

S. Deki, Y. Aoi, and A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Sci. 32(16), 4269–4273 (1997).
[CrossRef]

J. Phys. Condens. Matter (1)

G. Stefanovich, A. Pergament, and D. Stefanovich, “Electrical switching and Mott transition in VO2,” J. Phys. Condens. Matter 12(41), 8837–8845 (2000).
[CrossRef]

J. Vac. Sci. Technol. A (3)

S. D. Hansen and C. R. Aita, “Low temperature reactive sputter deposition of vanadium oxide,” J. Vac. Sci. Technol. A 3(3), 660–663 (1985).
[CrossRef]

N. Fieldhouse, S. M. Pursel, R. Carey, M. W. Horn, and S. S. N. Bharadwaja, “Vanadium oxide thin films for bolometric applications deposited by reactive pulsed dc sputtering,” J. Vac. Sci. Technol. A 27(4), 951–955 (2009).
[CrossRef]

C. Venkatasubramanian, O. M. Cabarcos, D. L. Allara, M. W. Horn, and S. Ashok, “Correlation of temperature response and structure of annealed VOx thin films for IR detector applications,” J. Vac. Sci. Technol. A 27(4), 956–961 (2009).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

C. Venkatasubramanian, M. W. Horn, and S. Ashok, “Ion implantation studies on VOx films prepared by pulsed dc reactive sputtering,” Nucl. Instrum. Methods Phys. Res. B 267(8-9), 1476–1479 (2009).
[CrossRef]

Opt. Eng. (1)

H. Jerominek, F. Picard, and D. Vincent, “Vanadium oxide films for optical switching and detection,” Opt. Eng. 32(9), 2092–2099 (1993).
[CrossRef]

Thin Solid Films (2)

H. Miyazaki, M. Kamei, and I. Yasui, “Vanadium oxide thin films depostied onto Cu buffer layer by RF magnetron sputtering,” Thin Solid Films 343–344, 168–170 (1999).
[CrossRef]

F. Guinneton, L. Sauques, J. C. Valmalette, F. Cros, and J. R. Gavarri, “Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure,” Thin Solid Films 446(2), 287–295 (2004).
[CrossRef]

Other (1)

S. Sakata, P. O. Vaccaro, S. Yamaoka, I. Umezu, and A. Sugimura, “Selective oxidation of vanadium thin film surfaces using an atomic force microscope,” Conference on Optoelectronic & Microelectronic Materials and Devices, Proceedings, COMMAD, 419–421(1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sheet resistance vs. temperature for VO2(B) thin films made by magnetron controlled sputtering.

Fig. 2
Fig. 2

Sheet resistance vs. temperature for VO2(B) thin films after annealing at different temperature.

Fig. 3
Fig. 3

XRD pattern of VO2 (B) thin films.

Fig. 4
Fig. 4

XRD pattern of VO2 thin films fabrication by post annealing for 60min at 425°C.

Fig. 5
Fig. 5

Micrographs of VO2 (B) thin film: (a) SEM and (b) AFM micrographs.

Fig. 6
Fig. 6

The SEM micrograph of vanadium oxide thin film by post annealing process for 60min at 425°C.

Fig. 7
Fig. 7

Transient thermal analysis result of the temperature distribution of the thin film irradiated for different period: (a) 1ms; (b) 2ms; (c) 5ms; (d) 10ms.

Fig. 8
Fig. 8

Schematic diagram of the experimental apparatus used to measure vanadium oxide thin film switching time.

Fig. 9
Fig. 9

The output voltage of the optical switch.

Tables (1)

Tables Icon

Table 1 The parameters of the magnetron controlled sputtering deposition.

Metrics