Abstract

Using the zero-phonon line (ZPL) emission of a single molecule, we realized a triggered source of near-infra-red (λ=785 nm) single photons at a high repetition rate. A Weierstrass solid immersion lens is used to image single molecules with an optical resolution of 300 nm (~0.4λ) and a high collection efficiency. Because dephasing of the transition dipole due to phonons vanishes at liquid helium temperatures, our source is attractive for the efficient generation of single indistinguishable photons.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
    [CrossRef]
  2. Ph. Grangier, B. Sanders, and J. Vuckovic, eds., “Focus on Single Photons on Demand”, New. J. Phys. 6 (2004).
  3. C. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
    [CrossRef]
  4. B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407(6803), 491–493 (2000).
    [CrossRef] [PubMed]
  5. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
    [CrossRef] [PubMed]
  6. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
    [CrossRef] [PubMed]
  7. A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
    [CrossRef]
  8. A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
    [CrossRef] [PubMed]
  9. M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
    [CrossRef] [PubMed]
  10. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
    [CrossRef] [PubMed]
  11. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
    [CrossRef] [PubMed]
  12. M. Orrit, J. Bernard, R. Brown, and B. Lounis, “Optical spectroscopy of single molecules in solids,” Prog. Opt. 35, 61–144 (1996).
    [CrossRef]
  13. T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild, eds., “Single-Molecule Optical Detection, Imaging and Spectroscopy”, VCH, Weinheim, Germany, (1997).
  14. Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single-molecule spectroscopy,” J. Phys. Chem. A 104(1), 1–16 (2000).
    [CrossRef]
  15. F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and Th. Basché, “Single-molecule optical switching of terrylene in p-terphenyl,” Nature 387(6634), 688–691 (1997).
    [CrossRef]
  16. A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005).
    [CrossRef] [PubMed]
  17. V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
    [CrossRef]
  18. R. Lettow, V. Ahtee, R. Pfab, A. Renn, E. Ikonen, S. Götzinger, and V. Sandoghdar, “Realization of two Fourier-limited solid-state single-photon sources,” Opt. Express 15(24), 15842–15847 (2007).
    [CrossRef] [PubMed]
  19. Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83(13), 2652–2655 (1999).
    [CrossRef]
  20. V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92(2), 660–665 (2002).
    [CrossRef]
  21. K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
    [CrossRef]
  22. C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, “Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals,” Chem. Phys. 318(1-2), 1–6 (2005).
    [CrossRef]
  23. A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
    [CrossRef] [PubMed]

2008 (1)

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

2007 (2)

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
[CrossRef] [PubMed]

R. Lettow, V. Ahtee, R. Pfab, A. Renn, E. Ikonen, S. Götzinger, and V. Sandoghdar, “Realization of two Fourier-limited solid-state single-photon sources,” Opt. Express 15(24), 15842–15847 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[CrossRef] [PubMed]

2005 (3)

A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005).
[CrossRef] [PubMed]

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
[CrossRef]

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, “Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals,” Chem. Phys. 318(1-2), 1–6 (2005).
[CrossRef]

2004 (1)

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

2002 (4)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92(2), 660–665 (2002).
[CrossRef]

2001 (1)

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

2000 (4)

Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single-molecule spectroscopy,” J. Phys. Chem. A 104(1), 1–16 (2000).
[CrossRef]

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407(6803), 491–493 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

1999 (2)

C. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[CrossRef]

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83(13), 2652–2655 (1999).
[CrossRef]

1997 (1)

F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and Th. Basché, “Single-molecule optical switching of terrylene in p-terphenyl,” Nature 387(6634), 688–691 (1997).
[CrossRef]

1996 (1)

M. Orrit, J. Bernard, R. Brown, and B. Lounis, “Optical spectroscopy of single molecules in solids,” Prog. Opt. 35, 61–144 (1996).
[CrossRef]

Ahtee, V.

Basché, Th.

F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and Th. Basché, “Single-molecule optical switching of terrylene in p-terphenyl,” Nature 387(6634), 688–691 (1997).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Bernard, J.

M. Orrit, J. Bernard, R. Brown, and B. Lounis, “Optical spectroscopy of single molecules in solids,” Prog. Opt. 35, 61–144 (1996).
[CrossRef]

Beugnon, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[CrossRef] [PubMed]

Beveratos, A.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Bjork, G.

V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92(2), 660–665 (2002).
[CrossRef]

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Blom, H.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Bordat, P.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
[CrossRef] [PubMed]

Bräuchle, C.

A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005).
[CrossRef] [PubMed]

F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and Th. Basché, “Single-molecule optical switching of terrylene in p-terphenyl,” Nature 387(6634), 688–691 (1997).
[CrossRef]

Brouri, R.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Browaeys, A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[CrossRef] [PubMed]

Brown, R.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
[CrossRef] [PubMed]

M. Orrit, J. Bernard, R. Brown, and B. Lounis, “Optical spectroscopy of single molecules in solids,” Prog. Opt. 35, 61–144 (1996).
[CrossRef]

Brunel, C.

C. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[CrossRef]

Dalgarno, P. A.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Darquié, B.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[CrossRef] [PubMed]

Dingjan, J.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[CrossRef] [PubMed]

Ehrl, M.

A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005).
[CrossRef] [PubMed]

Fattal, D.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Gacoin, T.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Gammon, D.

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83(13), 2652–2655 (1999).
[CrossRef]

Gerardot, B. D.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Goobar, E.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Götzinger, S.

Grangier, P.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[CrossRef] [PubMed]

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Grober, R. D.

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83(13), 2652–2655 (1999).
[CrossRef]

Hadfield, R. H.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Hayasaka, K.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Hellerer, T.

A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005).
[CrossRef] [PubMed]

Hennrich, M.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

Hofmann, C.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
[CrossRef] [PubMed]

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, “Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals,” Chem. Phys. 318(1-2), 1–6 (2005).
[CrossRef]

Hu, E.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Ikonen, E.

Imamoglu, A.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Jeppesen, S.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Jones, M. P. A.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[CrossRef] [PubMed]

Jonsson, P.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Katzer, D. S.

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83(13), 2652–2655 (1999).
[CrossRef]

Keller, M.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Kiraz, A.

A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Kol’chenko, M. A.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
[CrossRef] [PubMed]

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, “Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals,” Chem. Phys. 318(1-2), 1–6 (2005).
[CrossRef]

Kozankiewicz, B.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
[CrossRef] [PubMed]

Kuhn, A.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

Kuhn, S.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Kulzer, F.

F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and Th. Basché, “Single-molecule optical switching of terrylene in p-terphenyl,” Nature 387(6634), 688–691 (1997).
[CrossRef]

Kummer, S.

F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and Th. Basché, “Single-molecule optical switching of terrylene in p-terphenyl,” Nature 387(6634), 688–691 (1997).
[CrossRef]

Kurtsiefer, C.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Lange, B.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Lange, W.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Lettow, R.

Lounis, B.

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
[CrossRef]

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407(6803), 491–493 (2000).
[CrossRef] [PubMed]

Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single-molecule spectroscopy,” J. Phys. Chem. A 104(1), 1–16 (2000).
[CrossRef]

C. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[CrossRef]

M. Orrit, J. Bernard, R. Brown, and B. Lounis, “Optical spectroscopy of single molecules in solids,” Prog. Opt. 35, 61–144 (1996).
[CrossRef]

Maali, A.

Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single-molecule spectroscopy,” J. Phys. Chem. A 104(1), 1–16 (2000).
[CrossRef]

Matzke, R.

F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and Th. Basché, “Single-molecule optical switching of terrylene in p-terphenyl,” Nature 387(6634), 688–691 (1997).
[CrossRef]

Mayer, S.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Messin, G.

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Moerner, W. E.

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407(6803), 491–493 (2000).
[CrossRef] [PubMed]

Müstecaplioglu, O. E.

A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005).
[CrossRef] [PubMed]

Nicolet, A.

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, “Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals,” Chem. Phys. 318(1-2), 1–6 (2005).
[CrossRef]

Nicolet, A. A. L.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
[CrossRef] [PubMed]

O'Connor, J. A.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Orrit, M.

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
[CrossRef] [PubMed]

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, “Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals,” Chem. Phys. 318(1-2), 1–6 (2005).
[CrossRef]

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
[CrossRef]

Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single-molecule spectroscopy,” J. Phys. Chem. A 104(1), 1–16 (2000).
[CrossRef]

C. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[CrossRef]

M. Orrit, J. Bernard, R. Brown, and B. Lounis, “Optical spectroscopy of single molecules in solids,” Prog. Opt. 35, 61–144 (1996).
[CrossRef]

Panev, N.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Petroff, P. M.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Pfab, R.

Pistol, M. E.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Poizat, J. P.

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

Ramsay, E.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Reid, D. T.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Rempe, G.

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

Renn, A.

Samuelson, L.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Sandoghdar, V.

Santori, C.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Serrels, K. A.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Solomon, G. S.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Tamarat, Ph.

Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single-molecule spectroscopy,” J. Phys. Chem. A 104(1), 1–16 (2000).
[CrossRef]

C. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[CrossRef]

Tsegaye, T.

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Vuckovic, J.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Walther, H.

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

Warburton, R. J.

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

Weinfurter, H.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Wu, Q.

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83(13), 2652–2655 (1999).
[CrossRef]

Yamamoto, Y.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Zarda, P.

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Zhang, L. D.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Zumbusch, A.

A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005).
[CrossRef] [PubMed]

Zwiller, V.

V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92(2), 660–665 (2002).
[CrossRef]

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

V. Zwiller, H. Blom, P. Jonsson, N. Panev, S. Jeppesen, T. Tsegaye, E. Goobar, M. E. Pistol, L. Samuelson, and G. Bjork, “Single quantum dots emit single photons at a time: Antibunching experiments,” Appl. Phys. Lett. 78(17), 2476–2478 (2001).
[CrossRef]

Chem. Phys. (1)

C. Hofmann, A. Nicolet, M. A. Kol’chenko, and M. Orrit, “Towards nanoprobes for conduction in molecular crystals: Dibenzoterrylene in anthracene crystals,” Chem. Phys. 318(1-2), 1–6 (2005).
[CrossRef]

ChemPhysChem (1)

A. A. L. Nicolet, P. Bordat, C. Hofmann, M. A. Kol’chenko, B. Kozankiewicz, R. Brown, and M. Orrit, “Single dibenzoterrylene molecules in an anthracene crystal: main insertion sites,” ChemPhysChem 8(13), 1929–1936 (2007).
[CrossRef] [PubMed]

Eur. Phys. J. D (1)

A. Beveratos, S. Kuhn, R. Brouri, T. Gacoin, J. P. Poizat, and P. Grangier, “Room temperature stable single-photon source,” Eur. Phys. J. D 18(2), 191–196 (2002).
[CrossRef]

J. Appl. Phys. (1)

V. Zwiller and G. Bjork, “Improved light extraction from emitters in high refractive index materials using solid immersion lenses,” J. Appl. Phys. 92(2), 660–665 (2002).
[CrossRef]

J. Nanophoton. (1)

K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. D. Gerardot, J. A. O'Connor, R. H. Hadfield, R. J. Warburton, and D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008).
[CrossRef]

J. Phys. Chem. A (1)

Ph. Tamarat, A. Maali, B. Lounis, and M. Orrit, “Ten years of single-molecule spectroscopy,” J. Phys. Chem. A 104(1), 1–16 (2000).
[CrossRef]

Nature (5)

F. Kulzer, S. Kummer, R. Matzke, C. Bräuchle, and Th. Basché, “Single-molecule optical switching of terrylene in p-terphenyl,” Nature 387(6634), 688–691 (1997).
[CrossRef]

M. Keller, B. Lange, K. Hayasaka, W. Lange, and H. Walther, “Continuous generation of single photons with controlled waveform in an ion-trap cavity system,” Nature 431(7012), 1075–1078 (2004).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440(7085), 779–782 (2006).
[CrossRef] [PubMed]

B. Lounis and W. E. Moerner, “Single photons on demand from a single molecule at room temperature,” Nature 407(6803), 491–493 (2000).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (5)

Q. Wu, R. D. Grober, D. Gammon, and D. S. Katzer, “Imaging spectroscopy of two-dimensional excitons in a narrow GaAs/AlGaAs quantum well,” Phys. Rev. Lett. 83(13), 2652–2655 (1999).
[CrossRef]

A. Kiraz, M. Ehrl, T. Hellerer, O. E. Müstecaplioğlu, C. Bräuchle, and A. Zumbusch, “Indistinguishable photons from a single molecule,” Phys. Rev. Lett. 94(22), 223602 (2005).
[CrossRef] [PubMed]

A. Kuhn, M. Hennrich, and G. Rempe, “Deterministic single-photon source for distributed quantum networking,” Phys. Rev. Lett. 89(6), 067901 (2002).
[CrossRef] [PubMed]

C. Brunel, Ph. Tamarat, B. Lounis, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. 83(14), 2722–2725 (1999).
[CrossRef]

C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. 85(2), 290–293 (2000).
[CrossRef] [PubMed]

Prog. Opt. (1)

M. Orrit, J. Bernard, R. Brown, and B. Lounis, “Optical spectroscopy of single molecules in solids,” Prog. Opt. 35, 61–144 (1996).
[CrossRef]

Rep. Prog. Phys. (1)

B. Lounis and M. Orrit, “Single-photon sources,” Rep. Prog. Phys. 68(5), 1129–1179 (2005).
[CrossRef]

Science (1)

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. D. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Other (2)

Ph. Grangier, B. Sanders, and J. Vuckovic, eds., “Focus on Single Photons on Demand”, New. J. Phys. 6 (2004).

T. Basché, W. E. Moerner, M. Orrit, and U. P. Wild, eds., “Single-Molecule Optical Detection, Imaging and Spectroscopy”, VCH, Weinheim, Germany, (1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Scheme of our home-built scanning confocal microscope which combines a SIL in the Weierstrass configuration and an aspherical lens. (b) A 5×5 µm2 confocal image of single DBT molecules trapped in an Ac crystal at 2 K. The molecules are pumped with a cw laser (at 767 nm) into a vibronic level. This image was recorded with photons emitted on the ZPL, using a combination of steep-edge optical filters having an overall transmission spectral window of a few nanometers width around 785 nm. (c) Emission spectrum of a single DBT molecule, composed of a narrow and intense ZPL, vibrational fluorescence lines, and phonon sidebands. The relative weight of the ZPL in the entire emission spectrum is 33%.

Fig. 2
Fig. 2

(a) Saturation plot of the ZPL fluorescence signal as a function of the excitation power. A fit of the data with the saturation law gives a saturated count rate of 180 kcounts/s and a saturation power of 3.5 mW. (b) ZPL excitation spectrum of a single DBT molecule at 2 K, at an excitation intensity well below the saturation intensity. A fit with a Lorentzian profile gives a homogeneous linewidth of 37 MHz.

Fig. 3
Fig. 3

Histograms of time delays in a start-stop experiment performed with ZPL photons. (a): CW excitation (power 1 mW), over an integration time of 600 s. A fit of the experimental correlation curve gives a relative dip of 0.82 and an excited-state lifetime τf = 4.5 ± 0.1 ns. (b): Pulsed excitation (average power 3.5 mW), over an integration time of 1600 s. The ratio between the areas of the central peak and one of the lateral peaks is 22%. The exponential decay of the lateral peaks gives the excited-state lifetime τf = 4.7 ± 0.3 ns.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

S / S = P / P s a t 1 + P / P s a l ,
C ( 2 ) ( τ ) = C ( 2 ) ( ) { 1 b   exp   [ | τ | τ f ( 1 + P P s a t ) ] } ,

Metrics