Abstract

This letter presents a simple phase modulation scheme for interrogation of low-coherence interferometry based fiber-tip pressure sensors to enable real-time monitoring and miniaturization of the entire sensor system. The key idea is to introduce a sinusoidal modulation signal and retrieve the sensing cavity length change using a simple algorithm, without resorting to any time information. In experiments, phase modulation has been achieved by using a silicon-micromachined tunable Fabry-Pérot interferometer, which is integrated with a light source and a photodiode onto a single chip. Compared with the conventional interrogation methods, this scheme possesses the merits of being less susceptible to disturbance, easy control and easy miniaturization, making it particularly suitable for sensing in constrained spaces and harsh environments.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
    [CrossRef]
  2. Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
    [CrossRef]
  3. W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. Jones, “Miniature fiber optic pressure sensors for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
    [CrossRef]
  4. J. I. Peterson and G. G. Vurek, “Fiber-optic sensors for biomedical applications,” Sci. 224(4645), 123–127 (1984).
    [CrossRef]
  5. S. Nesson, M. Yu, X. M. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
    [CrossRef]
  6. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
    [CrossRef]
  7. Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
    [CrossRef]
  8. V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
    [CrossRef]
  9. E. Cibula and D. Ðonlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
    [CrossRef]
  10. Y. Zhu and A. Wang,” Miniature Fiber-Optic Pressure Sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).
  11. Y. Wang, M. Han, and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of inteferometric fiber-optic sensors,” Opt. LETT. 31(16), 2408–2410 (2006).
    [CrossRef]
  12. Y. Wang, M. Han, and A. Wang, “Analysis of a high-speed fiber-optic spectrometer for fiber-optic sensor signal processing,” Appl. Opt. 46(33), 8149–8158 (2007).
    [CrossRef]
  13. B. T. Meggitt, “Fiber optic white light interferometric sensors,” in Optical Fiber Sensor Technology - Fundamentals, K. T. V. Gratten and B. T. Meggitt, eds. (Kluwer, 2000), pp. 205–214.
  14. K. J. Gåsvik, Optical Metrology, 2nd ed. (John Wiley & Sons, 1995).
  15. Y. J. Rao and D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18(24), 2153–2155 (1993).
    [CrossRef]
  16. M. Adachi, “Phase-shift algorithm for white-light interferometry insensitive to linear errors in phase shift,” Opt. Rev. 15(3), 148–155 (2008).
    [CrossRef]
  17. M. Yu and B. Balachandran, “Acoustic measurements using a fiber optic sensor system”, J. Intell. Mat. Syst. Struct. 14(7), 409–414 (2003).
    [CrossRef]
  18. C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, “High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity,” Opt. Exp. 17(3), 1442–1446 (2009).
    [CrossRef]
  19. M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, “Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Exp. 8(8), 475–480 (2001).
    [CrossRef]
  20. J. M. Kilpatrick, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, “Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients,” App. Opt. 39(9), 1382–1388 (2000).
    [CrossRef]
  21. W. N. MacPherson, S. R. Kidd, J. S. Barton, and J. D. C. Jones, “Phase demodulation in optical fibre Fabry-Perot sensors with inexact phase steps,” IEE Proc.-Optoelectron. 144(3), 130–133 (1997).
    [CrossRef]
  22. R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
    [CrossRef]
  23. A. Dubois, “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18(8), 1972–1979 (2001).
    [CrossRef]
  24. J. H. Cole, B. A. Danver, and J. A. Bucaro, “Synthetic-heterodyne interferometric demoludation,” IEEE J. Quantum Electron. QE-18(4), 694–697 (1982).
    [CrossRef]
  25. A. Dandridge, A. B. Tveten, and G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensor using phase generated carrier,” IEEE Trans. Microwave Theory Tech. MTT-30(10), 1635–1641 (1982).
    [CrossRef]
  26. M. J Connelly, “Digital synthetic-heterodyne interferometric demodulation,” J. Opt. A: Pure Appl. Opt. 4(6), S400–S405 (2002).
    [CrossRef]
  27. M. J. Connelly, P. Szecowka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Laser Doppler vibrometry system using the synthetic-heterodyne interferometric demodulation scheme implemented on a CMOS DSP camera,” in Proceedings of Sixth International Symposium, Communication Systems, Networks and Digital Signal Processing, E. Leitgeb, W. Kogler, and Z. Ghassemlooy, eds. (Graz, Austria, 2008), pp. 133–136.
  28. S-C Huang and H. Lin, “Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber,” Appl. Opt. 46(31), 7594–7603 (2007).
    [CrossRef]
  29. L. Feng, J. He, J-Y Duan, F. Li, and Y-L Liu, “Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on Compact RIO,” J. Electron. Sci. Technol. China 6(4), 385–388 (2008).

2009 (1)

C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, “High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity,” Opt. Exp. 17(3), 1442–1446 (2009).
[CrossRef]

2008 (3)

S. Nesson, M. Yu, X. M. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef]

M. Adachi, “Phase-shift algorithm for white-light interferometry insensitive to linear errors in phase shift,” Opt. Rev. 15(3), 148–155 (2008).
[CrossRef]

L. Feng, J. He, J-Y Duan, F. Li, and Y-L Liu, “Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on Compact RIO,” J. Electron. Sci. Technol. China 6(4), 385–388 (2008).

2007 (2)

S-C Huang and H. Lin, “Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber,” Appl. Opt. 46(31), 7594–7603 (2007).
[CrossRef]

Y. Wang, M. Han, and A. Wang, “Analysis of a high-speed fiber-optic spectrometer for fiber-optic sensor signal processing,” Appl. Opt. 46(33), 8149–8158 (2007).
[CrossRef]

2006 (2)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Y. Wang, M. Han, and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of inteferometric fiber-optic sensors,” Opt. LETT. 31(16), 2408–2410 (2006).
[CrossRef]

2005 (5)

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef]

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
[CrossRef]

E. Cibula and D. Ðonlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
[CrossRef]

Y. Zhu and A. Wang,” Miniature Fiber-Optic Pressure Sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).

2003 (1)

M. Yu and B. Balachandran, “Acoustic measurements using a fiber optic sensor system”, J. Intell. Mat. Syst. Struct. 14(7), 409–414 (2003).
[CrossRef]

2002 (1)

M. J Connelly, “Digital synthetic-heterodyne interferometric demodulation,” J. Opt. A: Pure Appl. Opt. 4(6), S400–S405 (2002).
[CrossRef]

2001 (2)

A. Dubois, “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18(8), 1972–1979 (2001).
[CrossRef]

M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, “Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Exp. 8(8), 475–480 (2001).
[CrossRef]

2000 (1)

J. M. Kilpatrick, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, “Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients,” App. Opt. 39(9), 1382–1388 (2000).
[CrossRef]

1999 (1)

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. Jones, “Miniature fiber optic pressure sensors for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

1997 (1)

W. N. MacPherson, S. R. Kidd, J. S. Barton, and J. D. C. Jones, “Phase demodulation in optical fibre Fabry-Perot sensors with inexact phase steps,” IEE Proc.-Optoelectron. 144(3), 130–133 (1997).
[CrossRef]

1996 (2)

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[CrossRef]

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

1993 (1)

Y. J. Rao and D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18(24), 2153–2155 (1993).
[CrossRef]

1984 (1)

J. I. Peterson and G. G. Vurek, “Fiber-optic sensors for biomedical applications,” Sci. 224(4645), 123–127 (1984).
[CrossRef]

1982 (2)

J. H. Cole, B. A. Danver, and J. A. Bucaro, “Synthetic-heterodyne interferometric demoludation,” IEEE J. Quantum Electron. QE-18(4), 694–697 (1982).
[CrossRef]

A. Dandridge, A. B. Tveten, and G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensor using phase generated carrier,” IEEE Trans. Microwave Theory Tech. MTT-30(10), 1635–1641 (1982).
[CrossRef]

Adachi, M.

M. Adachi, “Phase-shift algorithm for white-light interferometry insensitive to linear errors in phase shift,” Opt. Rev. 15(3), 148–155 (2008).
[CrossRef]

Balachandran, B.

M. Yu and B. Balachandran, “Acoustic measurements using a fiber optic sensor system”, J. Intell. Mat. Syst. Struct. 14(7), 409–414 (2003).
[CrossRef]

Barton, J. S.

J. M. Kilpatrick, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, “Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients,” App. Opt. 39(9), 1382–1388 (2000).
[CrossRef]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. Jones, “Miniature fiber optic pressure sensors for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

W. N. MacPherson, S. R. Kidd, J. S. Barton, and J. D. C. Jones, “Phase demodulation in optical fibre Fabry-Perot sensors with inexact phase steps,” IEE Proc.-Optoelectron. 144(3), 130–133 (1997).
[CrossRef]

Bhatia, V.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Bucaro, J. A.

J. H. Cole, B. A. Danver, and J. A. Bucaro, “Synthetic-heterodyne interferometric demoludation,” IEEE J. Quantum Electron. QE-18(4), 694–697 (1982).
[CrossRef]

Cibula, E.

E. Cibula and D. Ðonlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
[CrossRef]

Claus, R. O.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Cole, J. H.

J. H. Cole, B. A. Danver, and J. A. Bucaro, “Synthetic-heterodyne interferometric demoludation,” IEEE J. Quantum Electron. QE-18(4), 694–697 (1982).
[CrossRef]

Connelly, M. J

M. J Connelly, “Digital synthetic-heterodyne interferometric demodulation,” J. Opt. A: Pure Appl. Opt. 4(6), S400–S405 (2002).
[CrossRef]

Connelly, M. J.

M. J. Connelly, P. Szecowka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Laser Doppler vibrometry system using the synthetic-heterodyne interferometric demodulation scheme implemented on a CMOS DSP camera,” in Proceedings of Sixth International Symposium, Communication Systems, Networks and Digital Signal Processing, E. Leitgeb, W. Kogler, and Z. Ghassemlooy, eds. (Graz, Austria, 2008), pp. 133–136.

Cooper, K. L.

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef]

Dandridge, A.

A. Dandridge, A. B. Tveten, and G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensor using phase generated carrier,” IEEE Trans. Microwave Theory Tech. MTT-30(10), 1635–1641 (1982).
[CrossRef]

Danver, B. A.

J. H. Cole, B. A. Danver, and J. A. Bucaro, “Synthetic-heterodyne interferometric demoludation,” IEEE J. Quantum Electron. QE-18(4), 694–697 (1982).
[CrossRef]

Ðonlagic, D.

E. Cibula and D. Ðonlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
[CrossRef]

Duan, J-Y

L. Feng, J. He, J-Y Duan, F. Li, and Y-L Liu, “Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on Compact RIO,” J. Electron. Sci. Technol. China 6(4), 385–388 (2008).

Dubois, A.

A. Dubois, “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18(8), 1972–1979 (2001).
[CrossRef]

Elwenspoek, M.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[CrossRef]

Eom, T. B.

C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, “High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity,” Opt. Exp. 17(3), 1442–1446 (2009).
[CrossRef]

Esashi, M.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[CrossRef]

Feng, L.

L. Feng, J. He, J-Y Duan, F. Li, and Y-L Liu, “Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on Compact RIO,” J. Electron. Sci. Technol. China 6(4), 385–388 (2008).

Fürstenau, N.

M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, “Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Exp. 8(8), 475–480 (2001).
[CrossRef]

Gåsvik, K. J.

K. J. Gåsvik, Optical Metrology, 2nd ed. (John Wiley & Sons, 1995).

Giallorenzi, G.

A. Dandridge, A. B. Tveten, and G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensor using phase generated carrier,” IEEE Trans. Microwave Theory Tech. MTT-30(10), 1635–1641 (1982).
[CrossRef]

Grace, J. L.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Greene, J. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Groeneveld, A. W.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[CrossRef]

Haga, Y.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[CrossRef]

Han, M.

Y. Wang, M. Han, and A. Wang, “Analysis of a high-speed fiber-optic spectrometer for fiber-optic sensor signal processing,” Appl. Opt. 46(33), 8149–8158 (2007).
[CrossRef]

Y. Wang, M. Han, and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of inteferometric fiber-optic sensors,” Opt. LETT. 31(16), 2408–2410 (2006).
[CrossRef]

He, J.

L. Feng, J. He, J-Y Duan, F. Li, and Y-L Liu, “Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on Compact RIO,” J. Electron. Sci. Technol. China 6(4), 385–388 (2008).

Hsieh, A. H.

S. Nesson, M. Yu, X. M. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef]

Huang, S-C

S-C Huang and H. Lin, “Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber,” Appl. Opt. 46(31), 7594–7603 (2007).
[CrossRef]

Huang, Z.

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
[CrossRef]

Jackson, D. A.

Y. J. Rao and D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18(24), 2153–2155 (1993).
[CrossRef]

Jallapuram, R.

M. J. Connelly, P. Szecowka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Laser Doppler vibrometry system using the synthetic-heterodyne interferometric demodulation scheme implemented on a CMOS DSP camera,” in Proceedings of Sixth International Symposium, Communication Systems, Networks and Digital Signal Processing, E. Leitgeb, W. Kogler, and Z. Ghassemlooy, eds. (Graz, Austria, 2008), pp. 133–136.

Jang, R.

C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, “High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity,” Opt. Exp. 17(3), 1442–1446 (2009).
[CrossRef]

Jones, J. D.

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. Jones, “Miniature fiber optic pressure sensors for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

Jones, J. D. C.

J. M. Kilpatrick, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, “Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients,” App. Opt. 39(9), 1382–1388 (2000).
[CrossRef]

W. N. MacPherson, S. R. Kidd, J. S. Barton, and J. D. C. Jones, “Phase demodulation in optical fibre Fabry-Perot sensors with inexact phase steps,” IEE Proc.-Optoelectron. 144(3), 130–133 (1997).
[CrossRef]

Jones, M. E.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Kang, C-S

C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, “High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity,” Opt. Exp. 17(3), 1442–1446 (2009).
[CrossRef]

Kidd, S. R.

W. N. MacPherson, S. R. Kidd, J. S. Barton, and J. D. C. Jones, “Phase demodulation in optical fibre Fabry-Perot sensors with inexact phase steps,” IEE Proc.-Optoelectron. 144(3), 130–133 (1997).
[CrossRef]

Kilpatrick, J. M.

J. M. Kilpatrick, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, “Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients,” App. Opt. 39(9), 1382–1388 (2000).
[CrossRef]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. Jones, “Miniature fiber optic pressure sensors for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

Kim, J. W.

C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, “High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity,” Opt. Exp. 17(3), 1442–1446 (2009).
[CrossRef]

Kim, J-A

C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, “High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity,” Opt. Exp. 17(3), 1442–1446 (2009).
[CrossRef]

Legtenberg, R.

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[CrossRef]

Li, F.

L. Feng, J. He, J-Y Duan, F. Li, and Y-L Liu, “Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on Compact RIO,” J. Electron. Sci. Technol. China 6(4), 385–388 (2008).

Lin, H.

S-C Huang and H. Lin, “Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber,” Appl. Opt. 46(31), 7594–7603 (2007).
[CrossRef]

Liu, Y-L

L. Feng, J. He, J-Y Duan, F. Li, and Y-L Liu, “Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on Compact RIO,” J. Electron. Sci. Technol. China 6(4), 385–388 (2008).

MacPherson, W. N.

J. M. Kilpatrick, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, “Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients,” App. Opt. 39(9), 1382–1388 (2000).
[CrossRef]

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. Jones, “Miniature fiber optic pressure sensors for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

W. N. MacPherson, S. R. Kidd, J. S. Barton, and J. D. C. Jones, “Phase demodulation in optical fibre Fabry-Perot sensors with inexact phase steps,” IEE Proc.-Optoelectron. 144(3), 130–133 (1997).
[CrossRef]

Martin, S.

M. J. Connelly, P. Szecowka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Laser Doppler vibrometry system using the synthetic-heterodyne interferometric demodulation scheme implemented on a CMOS DSP camera,” in Proceedings of Sixth International Symposium, Communication Systems, Networks and Digital Signal Processing, E. Leitgeb, W. Kogler, and Z. Ghassemlooy, eds. (Graz, Austria, 2008), pp. 133–136.

Matthias, M.

M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, “Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Exp. 8(8), 475–480 (2001).
[CrossRef]

Meggitt, B. T.

B. T. Meggitt, “Fiber optic white light interferometric sensors,” in Optical Fiber Sensor Technology - Fundamentals, K. T. V. Gratten and B. T. Meggitt, eds. (Kluwer, 2000), pp. 205–214.

Melz, T.

M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, “Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Exp. 8(8), 475–480 (2001).
[CrossRef]

Murphy, K. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Nesson, S.

S. Nesson, M. Yu, X. M. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef]

Park, H. Y.

C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, “High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity,” Opt. Exp. 17(3), 1442–1446 (2009).
[CrossRef]

Peterson, J. I.

J. I. Peterson and G. G. Vurek, “Fiber-optic sensors for biomedical applications,” Sci. 224(4645), 123–127 (1984).
[CrossRef]

Rao, Y. J.

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Y. J. Rao and D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18(24), 2153–2155 (1993).
[CrossRef]

Schmidt, M.

M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, “Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Exp. 8(8), 475–480 (2001).
[CrossRef]

Shen, F.

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
[CrossRef]

Szecowka, P.

M. J. Connelly, P. Szecowka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Laser Doppler vibrometry system using the synthetic-heterodyne interferometric demodulation scheme implemented on a CMOS DSP camera,” in Proceedings of Sixth International Symposium, Communication Systems, Networks and Digital Signal Processing, E. Leitgeb, W. Kogler, and Z. Ghassemlooy, eds. (Graz, Austria, 2008), pp. 133–136.

Toal, V.

M. J. Connelly, P. Szecowka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Laser Doppler vibrometry system using the synthetic-heterodyne interferometric demodulation scheme implemented on a CMOS DSP camera,” in Proceedings of Sixth International Symposium, Communication Systems, Networks and Digital Signal Processing, E. Leitgeb, W. Kogler, and Z. Ghassemlooy, eds. (Graz, Austria, 2008), pp. 133–136.

Totsu, K.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[CrossRef]

Tran, T. A.

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Tveten, A. B.

A. Dandridge, A. B. Tveten, and G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensor using phase generated carrier,” IEEE Trans. Microwave Theory Tech. MTT-30(10), 1635–1641 (1982).
[CrossRef]

Vurek, G. G.

J. I. Peterson and G. G. Vurek, “Fiber-optic sensors for biomedical applications,” Sci. 224(4645), 123–127 (1984).
[CrossRef]

Wang, A.

Y. Wang, M. Han, and A. Wang, “Analysis of a high-speed fiber-optic spectrometer for fiber-optic sensor signal processing,” Appl. Opt. 46(33), 8149–8158 (2007).
[CrossRef]

Y. Wang, M. Han, and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of inteferometric fiber-optic sensors,” Opt. LETT. 31(16), 2408–2410 (2006).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef]

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
[CrossRef]

Y. Zhu and A. Wang,” Miniature Fiber-Optic Pressure Sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).

Wang, X.

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef]

Wang, Y.

Y. Wang, M. Han, and A. Wang, “Analysis of a high-speed fiber-optic spectrometer for fiber-optic sensor signal processing,” Appl. Opt. 46(33), 8149–8158 (2007).
[CrossRef]

Y. Wang, M. Han, and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of inteferometric fiber-optic sensors,” Opt. LETT. 31(16), 2408–2410 (2006).
[CrossRef]

Werther, B.

M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, “Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Exp. 8(8), 475–480 (2001).
[CrossRef]

Whelan, M. P.

M. J. Connelly, P. Szecowka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Laser Doppler vibrometry system using the synthetic-heterodyne interferometric demodulation scheme implemented on a CMOS DSP camera,” in Proceedings of Sixth International Symposium, Communication Systems, Networks and Digital Signal Processing, E. Leitgeb, W. Kogler, and Z. Ghassemlooy, eds. (Graz, Austria, 2008), pp. 133–136.

Xu, J.

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef]

Yu, M.

S. Nesson, M. Yu, X. M. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef]

M. Yu and B. Balachandran, “Acoustic measurements using a fiber optic sensor system”, J. Intell. Mat. Syst. Struct. 14(7), 409–414 (2003).
[CrossRef]

Zhang, X. M.

S. Nesson, M. Yu, X. M. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef]

Zhu, Y.

Y. Zhu and A. Wang,” Miniature Fiber-Optic Pressure Sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
[CrossRef]

App. Opt. (1)

J. M. Kilpatrick, W. N. MacPherson, J. S. Barton, and J. D. C. Jones, “Phase-demodulation error of a fiber-optic Fabry-Perot sensor with complex reflection coefficients,” App. Opt. 39(9), 1382–1388 (2000).
[CrossRef]

Appl. Opt. (3)

Y. Wang, M. Han, and A. Wang, “Analysis of a high-speed fiber-optic spectrometer for fiber-optic sensor signal processing,” Appl. Opt. 46(33), 8149–8158 (2007).
[CrossRef]

E. Cibula and D. Ðonlagic, “Miniature fiber-optic pressure sensor with a polymer diaphragm,” Appl. Opt. 44(14), 2736–2744 (2005).
[CrossRef]

S-C Huang and H. Lin, “Modified phase-generated carrier demodulation compensated for the propagation delay of the fiber,” Appl. Opt. 46(31), 7594–7603 (2007).
[CrossRef]

IEE Proc.-Optoelectron. (1)

W. N. MacPherson, S. R. Kidd, J. S. Barton, and J. D. C. Jones, “Phase demodulation in optical fibre Fabry-Perot sensors with inexact phase steps,” IEE Proc.-Optoelectron. 144(3), 130–133 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. H. Cole, B. A. Danver, and J. A. Bucaro, “Synthetic-heterodyne interferometric demoludation,” IEEE J. Quantum Electron. QE-18(4), 694–697 (1982).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Y. Zhu and A. Wang,” Miniature Fiber-Optic Pressure Sensor,” IEEE Photon. Technol. Lett. 17(2), 447–449 (2005).

IEEE Trans. Microwave Theory Tech. (1)

A. Dandridge, A. B. Tveten, and G. Giallorenzi, “Homodyne demodulation scheme for fiber optic sensor using phase generated carrier,” IEEE Trans. Microwave Theory Tech. MTT-30(10), 1635–1641 (1982).
[CrossRef]

J. Biomed. Opt. (1)

S. Nesson, M. Yu, X. M. Zhang, and A. H. Hsieh, “Miniature fiber optic pressure sensor with composite polymer-metal diaphragm for intradiscal pressure measurements,” J. Biomed. Opt. 13(4), 044040 (2008).
[CrossRef]

J. Electron. Sci. Technol. China (1)

L. Feng, J. He, J-Y Duan, F. Li, and Y-L Liu, “Implementation of phase generated carrier technique for FBG laser sensor multiplexed system based on Compact RIO,” J. Electron. Sci. Technol. China 6(4), 385–388 (2008).

J. Intell. Mat. Syst. Struct. (1)

M. Yu and B. Balachandran, “Acoustic measurements using a fiber optic sensor system”, J. Intell. Mat. Syst. Struct. 14(7), 409–414 (2003).
[CrossRef]

J. Micromech. Microeng. (2)

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15(1), 71–75 (2005).
[CrossRef]

R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” J. Micromech. Microeng. 6(3), 320–329 (1996).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. J Connelly, “Digital synthetic-heterodyne interferometric demodulation,” J. Opt. A: Pure Appl. Opt. 4(6), S400–S405 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

A. Dubois, “Phase-map measurements by interferometry with sinusoidal phase modulation and four integrating buckets,” J. Opt. Soc. Am. A 18(8), 1972–1979 (2001).
[CrossRef]

Meas. Sci. Technol. (1)

V. Bhatia, K. A. Murphy, R. O. Claus, M. E. Jones, J. L. Grace, T. A. Tran, and J. A. Greene, “Optical fiber based absolute extrinsic Fabry-Pérot interferometric sensing system,” Meas. Sci. Technol. 7(1), 58–61 (1996).
[CrossRef]

Opt. Exp. (2)

C-S Kang, J-A Kim, T. B. Eom, R. Jang, H. Y. Park, and J. W. Kim, “High speed phase shifting interferometry using injection locking of the laser frequency to the resonant modes of a confocal Fabry-Perot cavity,” Opt. Exp. 17(3), 1442–1446 (2009).
[CrossRef]

M. Schmidt, B. Werther, N. Fürstenau, M. Matthias, and T. Melz, “Fiber-Optic Extrinsic Fabry-Perot Interferometer Strain Sensor with <50 pm displacement resolution using three-wavelength digital phase demodulation,” Opt. Exp. 8(8), 475–480 (2001).
[CrossRef]

Opt. Fiber Technol. (1)

Y. J. Rao, “Recent progress in fiber-optic extrinsic Fabry-Pérot interferometric sensors,” Opt. Fiber Technol. 12(3), 227–237 (2006).
[CrossRef]

Opt. LETT. (1)

Y. Wang, M. Han, and A. Wang, “High-speed fiber-optic spectrometer for signal demodulation of inteferometric fiber-optic sensors,” Opt. LETT. 31(16), 2408–2410 (2006).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, “Miniature all-silica fiber optic pressure and acoustic sensors,” Opt. Lett. 30(24), 3269–3271 (2005).
[CrossRef]

Y. Zhu, Z. Huang, F. Shen, and A. Wang, “Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements,” Opt. Lett. 30(7), 711–713 (2005).
[CrossRef]

Y. J. Rao and D. A. Jackson, “Prototype fiber-optic-based Fizeau medical pressure sensor that uses coherence reading,” Opt. Lett. 18(24), 2153–2155 (1993).
[CrossRef]

Opt. Rev. (1)

M. Adachi, “Phase-shift algorithm for white-light interferometry insensitive to linear errors in phase shift,” Opt. Rev. 15(3), 148–155 (2008).
[CrossRef]

Rev. Sci. Instrum. (1)

W. N. MacPherson, J. M. Kilpatrick, J. S. Barton, and J. D. Jones, “Miniature fiber optic pressure sensors for turbomachinery applications,” Rev. Sci. Instrum. 70(3), 1868–1874 (1999).
[CrossRef]

Sci. (1)

J. I. Peterson and G. G. Vurek, “Fiber-optic sensors for biomedical applications,” Sci. 224(4645), 123–127 (1984).
[CrossRef]

Other (3)

B. T. Meggitt, “Fiber optic white light interferometric sensors,” in Optical Fiber Sensor Technology - Fundamentals, K. T. V. Gratten and B. T. Meggitt, eds. (Kluwer, 2000), pp. 205–214.

K. J. Gåsvik, Optical Metrology, 2nd ed. (John Wiley & Sons, 1995).

M. J. Connelly, P. Szecowka, R. Jallapuram, S. Martin, V. Toal, and M. P. Whelan, “Laser Doppler vibrometry system using the synthetic-heterodyne interferometric demodulation scheme implemented on a CMOS DSP camera,” in Proceedings of Sixth International Symposium, Communication Systems, Networks and Digital Signal Processing, E. Leitgeb, W. Kogler, and Z. Ghassemlooy, eds. (Graz, Austria, 2008), pp. 133–136.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schematic setup of sinusoidal phase modulation scheme for low-coherence interrogation of the fiber-tip pressure sensors. CP0 and CP1 represents 1×2 optical couplers.

Fig. 2.
Fig. 2.

Featured points on the modulated output waveform.

Fig. 3.
Fig. 3.

Single-chip integrated optical interrogation subsystem for implementation of the sinusoidal phase modulation scheme. (a) Photograph of the chip; and (b) micrograph of the micromachined resonant mirror, with a close-up of the mirror shown in the inset.

Fig. 4.
Fig. 4.

Measured waveforms of the modulation voltage signal applied to the micromachined resonant mirror and the interferometric outputs in response to different external pressures.

Fig. 5.
Fig. 5.

Comparison of the pressure sensor responses as measured by the sinusoidal modulation scheme and the reflection spectrum method.

Fig. 6.
Fig. 6.

Variation of the measured pressure in response to the change of modulation depth.

Fig. 7.
Fig. 7.

Variation of the retrieved phase in response to the temperature change.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

P ( τ ) = 1 + T 0 cos ( A sin τ + ϕ 0 ) .
A = 4 π ε 0 N h λ 0 ζ K 0 g V b V s 0 ,
ϕ 0 = 4 π λ 0 Δ L + 4 π λ 0 [ L 0 x 0 + ε 0 N h g ( V b 2 + 1 2 V s 0 2 ) ] ,
cos ( A + ϕ 0 ) = 2 P π 2 P max P min P max P min ,
cos ( A + ϕ 0 ) = 2 P + π 2 P max P min P max P min .
b 1 = arccos 2 P π / 2 P max P min P max P min ,
b 2 = arccos 2 P + π / 2 P max P min P max P min .
A = ( m n ) π + 1 2 ( a 2 a 1 ) ,
ϕ 0 = ( m + n ) π + 1 2 ( a 2 + a 1 ) .

Metrics