Abstract

We report a new optical performance monitoring technique based on the amplitude and phase histograms of the optical signal. The amplitude and phase histograms are obtained by using an intradyne receiver and the asynchronous delay-tap sampling method. From these histograms, we can evaluate the amplitude and phase Q-factors of the optical signal regardless of its modulation format. In addition, by using these Q-factors, we can estimate the bit-error rate (BER) of the monitoring signal.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Takushima, H. Y. Choi, and Y. C. Chung, “Adjustment-free DxPSK receiver based on single delay interferometer using 120-degree optical hybrid,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OMM2.
  2. G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Betran Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, “Transmission of 16.4 Tbit/s capacity over 2550 km using PDM QPSK modulation format and coherent receiver,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper PDP3.
  3. A. H. Gnauck, P. J. Winzer, C. R. Doerr, and L. L. Buhl, “10x112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper PDPB8.
  4. J. H. Lee, H. Y. Choi, S. K. Shin, and Y. C. Chung, “A review of the polarization-nulling technique for monitoring optical-signal-to-noise ratio in dynamic WDM networks,” J. Lightwave Technol. 24(11), 4162–4171 (2006).
    [CrossRef]
  5. T. B. Anderson, S. D. Dods, K. Clarke, J. Bedo, and A. Kowalczyk, “Multi-impairment monitoring for photonic networks,” in Proceedings of European Conference on Optical Communications (ECOC 2007), paper 3.5.1.
  6. C. Dorrer, “Monitoring of optical signals from constellation diagrams measured with linear optical sampling,” J. Lightwave Technol. 24(1), 313–321 (2006).
    [CrossRef]
  7. Y. Takushima, H. Y. Choi, and Y. C. Chung, “Measurement of differential phasor diagram of multilevel DPSK signals by using an adjustment-free delay interferometer composed of a 3x3 optical coupler,” J. Lightwave Technol. 27(6), 718–730 (2009).
    [CrossRef]
  8. H. Y. Choi, Y. Takushima, and Y. C. Chung, “Multiple-impairment monitoring technique using optical field detection and asynchronous delay-tap sampling method,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OThJ5.
  9. A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
    [CrossRef]
  10. G. P. Agrawal, Fiber-optic communication systems (John Wiley & Sons, Inc., 2002), Chap. 4.
  11. J. G. Proakis, Digital communications (McGraw-Hill, 2001), Chap. 5.
  12. K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
    [CrossRef]
  13. A. Leven, N. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
    [CrossRef]

2009 (1)

2007 (2)

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

A. Leven, N. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

2006 (2)

1983 (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Chen, Y.-K.

A. Leven, N. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Choi, H. Y.

Chung, Y. C.

Croussore, K.

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

Dorrer, C.

Kaneda, N.

A. Leven, N. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Koc, U.-V.

A. Leven, N. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Lee, J. H.

Leven, A.

A. Leven, N. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

Li, G.

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

Shin, S. K.

Takushima, Y.

Viterbi, A. J.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

Viterbi, A. M.

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

K. Croussore and G. Li, “Phase regeneration of NRZ-DPSK signals based on symmetric-pump phase-sensitive amplification,” IEEE Photon. Technol. Lett. 19(11), 864–866 (2007).
[CrossRef]

A. Leven, N. Kaneda, U.-V. Koc, and Y.-K. Chen, “Frequency estimation in intradyne reception,” IEEE Photon. Technol. Lett. 19(6), 366–368 (2007).
[CrossRef]

IEEE Trans. Inf. Theory (1)

A. J. Viterbi and A. M. Viterbi, “Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission,” IEEE Trans. Inf. Theory 29(4), 543–551 (1983).
[CrossRef]

J. Lightwave Technol. (3)

Other (7)

G. P. Agrawal, Fiber-optic communication systems (John Wiley & Sons, Inc., 2002), Chap. 4.

J. G. Proakis, Digital communications (McGraw-Hill, 2001), Chap. 5.

T. B. Anderson, S. D. Dods, K. Clarke, J. Bedo, and A. Kowalczyk, “Multi-impairment monitoring for photonic networks,” in Proceedings of European Conference on Optical Communications (ECOC 2007), paper 3.5.1.

Y. Takushima, H. Y. Choi, and Y. C. Chung, “Adjustment-free DxPSK receiver based on single delay interferometer using 120-degree optical hybrid,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OMM2.

G. Charlet, J. Renaudier, H. Mardoyan, P. Tran, O. Betran Pardo, F. Verluise, M. Achouche, A. Boutin, F. Blache, J.-Y. Dupuy, and S. Bigo, “Transmission of 16.4 Tbit/s capacity over 2550 km using PDM QPSK modulation format and coherent receiver,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper PDP3.

A. H. Gnauck, P. J. Winzer, C. R. Doerr, and L. L. Buhl, “10x112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper PDPB8.

H. Y. Choi, Y. Takushima, and Y. C. Chung, “Multiple-impairment monitoring technique using optical field detection and asynchronous delay-tap sampling method,” in Optical Fiber Communication Conference and Exposition and The National Fiber Optic Engineers Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2009), paper OThJ5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Configuration of the proposed technique. ADC: analog-to-digital converter (b) Signal waveform and two-tap plot. Tsampling: sampling period, Δt: tap delay.

Fig. 2
Fig. 2

Trajectories of the QPSK signal (a) before and (b) after the use of the M-th power algorithm.

Fig. 3
Fig. 3

(a) Amplitude and (b) phase TTPs and their corresponding histograms obtained along the diagonal lines of the QPSK signal.

Fig. 4
Fig. 4

Experimental setup. TLD: tunable laser diode, MZM: QPSK modulator, PM: phase modulator, ASE: amplified spontaneous emission, DSO: digital storage oscilloscope.

Fig. 5
Fig. 5

Measured (a) amplitude and (b) phase Q-factors of the QPSK signal. Δθ: peak-to-peak phase deviation

Fig. 6
Fig. 6

BER estimation from the proposed technique. Δθ: peak-to-peak phase deviation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Q A = I a σ a ,
Q P = I p σ p = | I p , n I p , ( n + 1 ) | σ p , n + σ p , ( n + 1 ) ,

Metrics