F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).

[CrossRef]
[PubMed]

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photon. 3, 381–387 (2009).

[CrossRef]

Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant spaces,” IEEE Trans. Signal Process. 57, 2986–2997 (2009).

[CrossRef]

M. Mishali and Y. C. Eldar, “Blind multi-band signal reconstruction: Compressed sensing for analog signals,” IEEE Trans. Signal Process. 57, 993–1009 (2009).

[CrossRef]

Y. C. Eldar and T. Michaeli, “Beyond bandlimited sampling,” IEEE Signal Proc. Mag. 26, 48–68 (2009).

[CrossRef]

T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, “Sparse sampling of signal innovations,” IEEE Signal Process. Mag. 25, 31–40 (2008).

[CrossRef]

A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations,” IEEE Trans. Inf. Theory 54, 4813–4820 (2008).

[CrossRef]

A. Ashok, P. K. Baheti, and M. A. Neifeld, “Compressive imaging system design using task-specific information,” Appl. Opt. 47, 4457–4471 (2008).

[CrossRef]
[PubMed]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).

[CrossRef]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).

[CrossRef]
[PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

[CrossRef]
[PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).

[CrossRef]
[PubMed]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[CrossRef]

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).

[CrossRef]

Z. Jacob, L. V. Alexeyev, and E. Narimanov, “Optical hyperlens: far-field imaging beyond the diffraction limit,” Opt. Express 14, 8247–8256 (2006).

[CrossRef]
[PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).

[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

[CrossRef]

D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. 102, 9446–9451 (2005).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).

[CrossRef]
[PubMed]

D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization,” Proc. Natl. Acad. Sci. 100, 2197–2201 (2003).

[CrossRef]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin v walks hand-over-hand: Single fluorophore imaging with 1.5nm localization,” Science 300, 2061–2065 (2003).

[CrossRef]
[PubMed]

M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Trans. Sig. Proc. 50, 1417–1428 (2002).

[CrossRef]

V. A. Mandelshtam, “FDM: the Filter Diagonalization Method for data processing in NMR experiments,” Prog. Nucl. Mag. Res. Sp. 38, 159–196 (2001).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

T. W. Ebbesen, H. G. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput. 20, 33–61 (1998).

[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

A. Lewis, M. Isaacson, A. Harotunian, and A. Muray, “Development of a 500å spatial-resolution light-microscope: I. light is efficiently transmitted through l/16 diameter apertures,” Ultramicroscopy 13, 227–232 (1984).

[CrossRef]

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst. 22, 735–742 (1975).

[CrossRef]

R. W. Gerchberg, “Super-resolution through error energy reduction,” J. Mod. Opt. 21, 709–720 (1974).

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).

[CrossRef]
[PubMed]

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).

[CrossRef]
[PubMed]

Z. Ben-Haim, Y. C. Eldar, and M. Elad, “Near-oracle performance of basis pursuit under random noise,” IEEE Trans. Signal Process. (submitted).

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, “Sparse sampling of signal innovations,” IEEE Signal Process. Mag. 25, 31–40 (2008).

[CrossRef]

M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Trans. Sig. Proc. 50, 1417–1428 (2002).

[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Ghost imaging via compressed sensing,” in “Frontiers in Optics (FiO),” (2009).

A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations,” IEEE Trans. Inf. Theory 54, 4813–4820 (2008).

[CrossRef]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).

[CrossRef]

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).

[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[CrossRef]

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput. 20, 33–61 (1998).

[CrossRef]

T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, “Sparse sampling of signal innovations,” IEEE Signal Process. Mag. 25, 31–40 (2008).

[CrossRef]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).

[CrossRef]
[PubMed]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

[CrossRef]

D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. 102, 9446–9451 (2005).

[CrossRef]
[PubMed]

D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization,” Proc. Natl. Acad. Sci. 100, 2197–2201 (2003).

[CrossRef]

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput. 20, 33–61 (1998).

[CrossRef]

T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, “Sparse sampling of signal innovations,” IEEE Signal Process. Mag. 25, 31–40 (2008).

[CrossRef]

T. W. Ebbesen, H. G. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photon. 3, 381–387 (2009).

[CrossRef]

A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations,” IEEE Trans. Inf. Theory 54, 4813–4820 (2008).

[CrossRef]

D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization,” Proc. Natl. Acad. Sci. 100, 2197–2201 (2003).

[CrossRef]

Z. Ben-Haim, Y. C. Eldar, and M. Elad, “Near-oracle performance of basis pursuit under random noise,” IEEE Trans. Signal Process. (submitted).

Y. C. Eldar and T. Michaeli, “Beyond bandlimited sampling,” IEEE Signal Proc. Mag. 26, 48–68 (2009).

[CrossRef]

M. Mishali and Y. C. Eldar, “Blind multi-band signal reconstruction: Compressed sensing for analog signals,” IEEE Trans. Signal Process. 57, 993–1009 (2009).

[CrossRef]

Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant spaces,” IEEE Trans. Signal Process. 57, 2986–2997 (2009).

[CrossRef]

Z. Ben-Haim, Y. C. Eldar, and M. Elad, “Near-oracle performance of basis pursuit under random noise,” IEEE Trans. Signal Process. (submitted).

M. Mishali and Y. C. Eldar, “From theory to practice: Sub-nyquist sampling of sparse wideband analog signals,” arXiv [0902.4291v1] (2009).

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).

[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).

[CrossRef]
[PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin v walks hand-over-hand: Single fluorophore imaging with 1.5nm localization,” Science 300, 2061–2065 (2003).

[CrossRef]
[PubMed]

R. W. Gerchberg, “Super-resolution through error energy reduction,” J. Mod. Opt. 21, 709–720 (1974).

T. W. Ebbesen, H. G. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin v walks hand-over-hand: Single fluorophore imaging with 1.5nm localization,” Science 300, 2061–2065 (2003).

[CrossRef]
[PubMed]

J. W. Goodman, Introduction to Fourier optics(Englewood, CO: Roberts & Co. Publishers, 2005), 3rd ed.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin v walks hand-over-hand: Single fluorophore imaging with 1.5nm localization,” Science 300, 2061–2065 (2003).

[CrossRef]
[PubMed]

A. Lewis, M. Isaacson, A. Harotunian, and A. Muray, “Development of a 500å spatial-resolution light-microscope: I. light is efficiently transmitted through l/16 diameter apertures,” Ultramicroscopy 13, 227–232 (1984).

[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

E. Hecht, Optics (Addison-Wesley, 1998).

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photon. 3, 381–387 (2009).

[CrossRef]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).

[CrossRef]
[PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).

[CrossRef]
[PubMed]

A. Lewis, M. Isaacson, A. Harotunian, and A. Muray, “Development of a 500å spatial-resolution light-microscope: I. light is efficiently transmitted through l/16 diameter apertures,” Ultramicroscopy 13, 227–232 (1984).

[CrossRef]

O. Katz, Y. Bromberg, and Y. Silberberg, “Ghost imaging via compressed sensing,” in “Frontiers in Optics (FiO),” (2009).

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).

[CrossRef]
[PubMed]

A. Lewis, M. Isaacson, A. Harotunian, and A. Muray, “Development of a 500å spatial-resolution light-microscope: I. light is efficiently transmitted through l/16 diameter apertures,” Ultramicroscopy 13, 227–232 (1984).

[CrossRef]

T. W. Ebbesen, H. G. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

[CrossRef]
[PubMed]

V. A. Mandelshtam, “FDM: the Filter Diagonalization Method for data processing in NMR experiments,” Prog. Nucl. Mag. Res. Sp. 38, 159–196 (2001).

[CrossRef]

T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, “Sparse sampling of signal innovations,” IEEE Signal Process. Mag. 25, 31–40 (2008).

[CrossRef]

M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Trans. Sig. Proc. 50, 1417–1428 (2002).

[CrossRef]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin v walks hand-over-hand: Single fluorophore imaging with 1.5nm localization,” Science 300, 2061–2065 (2003).

[CrossRef]
[PubMed]

Y. C. Eldar and T. Michaeli, “Beyond bandlimited sampling,” IEEE Signal Proc. Mag. 26, 48–68 (2009).

[CrossRef]

M. Mishali and Y. C. Eldar, “Blind multi-band signal reconstruction: Compressed sensing for analog signals,” IEEE Trans. Signal Process. 57, 993–1009 (2009).

[CrossRef]

M. Mishali and Y. C. Eldar, “From theory to practice: Sub-nyquist sampling of sparse wideband analog signals,” arXiv [0902.4291v1] (2009).

A. Lewis, M. Isaacson, A. Harotunian, and A. Muray, “Development of a 500å spatial-resolution light-microscope: I. light is efficiently transmitted through l/16 diameter apertures,” Ultramicroscopy 13, 227–232 (1984).

[CrossRef]

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).

[CrossRef]
[PubMed]

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst. 22, 735–742 (1975).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[CrossRef]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).

[CrossRef]

M. Saleh and B. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput. 20, 33–61 (1998).

[CrossRef]

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photon. 3, 381–387 (2009).

[CrossRef]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin v walks hand-over-hand: Single fluorophore imaging with 1.5nm localization,” Science 300, 2061–2065 (2003).

[CrossRef]
[PubMed]

O. Katz, Y. Bromberg, and Y. Silberberg, “Ghost imaging via compressed sensing,” in “Frontiers in Optics (FiO),” (2009).

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).

[CrossRef]
[PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).

[CrossRef]
[PubMed]

D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. 102, 9446–9451 (2005).

[CrossRef]
[PubMed]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[CrossRef]

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).

[CrossRef]

M. Saleh and B. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

T. W. Ebbesen, H. G. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, “Sparse sampling of signal innovations,” IEEE Signal Process. Mag. 25, 31–40 (2008).

[CrossRef]

M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Trans. Sig. Proc. 50, 1417–1428 (2002).

[CrossRef]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).

[CrossRef]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

T. W. Ebbesen, H. G. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

[CrossRef]
[PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin v walks hand-over-hand: Single fluorophore imaging with 1.5nm localization,” Science 300, 2061–2065 (2003).

[CrossRef]
[PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

[CrossRef]
[PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).

[CrossRef]
[PubMed]

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).

[CrossRef]
[PubMed]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).

[CrossRef]
[PubMed]

A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations,” IEEE Trans. Inf. Theory 54, 4813–4820 (2008).

[CrossRef]

Y. C. Eldar and T. Michaeli, “Beyond bandlimited sampling,” IEEE Signal Proc. Mag. 26, 48–68 (2009).

[CrossRef]

T. Blu, P. L. Dragotti, M. Vetterli, P. Marziliano, and L. Coulot, “Sparse sampling of signal innovations,” IEEE Signal Process. Mag. 25, 31–40 (2008).

[CrossRef]

E. J. Candes and M. B. Wakin, “An introduction to compressive sampling,” IEEE Signal Process. Mag. 25, 21–30 (2008).

[CrossRef]

A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst. 22, 735–742 (1975).

[CrossRef]

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

[CrossRef]

E. J. Candes, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information,” IEEE Trans. Inf. Theory 52, 489–509 (2006).

[CrossRef]

E. J. Candes and T. Tao, “Near-optimal signal recovery from random projections: Universal encoding strategies?” IEEE Trans. Inf. Theory 52, 5406–5425 (2006).

[CrossRef]

A. M. Bruckstein, M. Elad, and M. Zibulevsky, “On the uniqueness of nonnegative sparse solutions to underdetermined systems of equations,” IEEE Trans. Inf. Theory 54, 4813–4820 (2008).

[CrossRef]

M. Vetterli, P. Marziliano, and T. Blu, “Sampling signals with finite rate of innovation,” IEEE Trans. Sig. Proc. 50, 1417–1428 (2002).

[CrossRef]

Y. C. Eldar, “Compressed sensing of analog signals in shift-invariant spaces,” IEEE Trans. Signal Process. 57, 2986–2997 (2009).

[CrossRef]

M. Mishali and Y. C. Eldar, “Blind multi-band signal reconstruction: Compressed sensing for analog signals,” IEEE Trans. Signal Process. 57, 993–1009 (2009).

[CrossRef]

R. W. Gerchberg, “Super-resolution through error energy reduction,” J. Mod. Opt. 21, 709–720 (1974).

F. M. Huang and N. I. Zheludev, “Super-resolution without evanescent waves,” Nano Lett. 9, 1249–1254 (2009).

[CrossRef]
[PubMed]

N. I. Zheludev, “What diffraction limit?” Nat. Mater. 7, 420–422 (2008).

[CrossRef]
[PubMed]

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photon. 3, 381–387 (2009).

[CrossRef]

T. W. Ebbesen, H. G. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolf, “Extraordinary optical transmission through subwavelength hole arrays,” Nature 391, 667–669 (1998).

[CrossRef]

E. A. Ash and G. Nicholls, “Super-resolution aperture scanning microscope,” Nature 237, 510–512 (1972).

[CrossRef]
[PubMed]

A. Salandrino and N. Engheta, “Far-field subdiffraction optical microscopy using metamaterial crystals: Theory and simulations,” Phys. Rev. B 74, 075103 (2006).

[CrossRef]

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

[CrossRef]
[PubMed]

D. L. Donoho and M. Elad, “Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization,” Proc. Natl. Acad. Sci. 100, 2197–2201 (2003).

[CrossRef]

D. L. Donoho and J. Tanner, “Sparse nonnegative solution of underdetermined linear equations by linear programming,” Proc. Natl. Acad. Sci. 102, 9446–9451 (2005).

[CrossRef]
[PubMed]

V. A. Mandelshtam, “FDM: the Filter Diagonalization Method for data processing in NMR experiments,” Prog. Nucl. Mag. Res. Sp. 38, 159–196 (2001).

[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308, 534–537 (2005).

[CrossRef]
[PubMed]

E. Betzig, J. K. Trautman, T. D. Harris, J. S. Weiner, and R. L. Kostelak, “Breaking the diffraction barrier: optical microscopy on a nanometric scale,” Science 251, 1468–1470 (1991).

[CrossRef]
[PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315, 1686 (2007).

[CrossRef]
[PubMed]

I. I. Smolyaninov, Y. J. Hung, and C. C. Davis, “Magnifying superlens in the visible frequency range,” Science 315, 1699–1701 (2007).

[CrossRef]
[PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin v walks hand-over-hand: Single fluorophore imaging with 1.5nm localization,” Science 300, 2061–2065 (2003).

[CrossRef]
[PubMed]

S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comput. 20, 33–61 (1998).

[CrossRef]

A. Lewis, M. Isaacson, A. Harotunian, and A. Muray, “Development of a 500å spatial-resolution light-microscope: I. light is efficiently transmitted through l/16 diameter apertures,” Ultramicroscopy 13, 227–232 (1984).

[CrossRef]

E. Hecht, Optics (Addison-Wesley, 1998).

M. Saleh and B. Teich, Fundamentals of Photonics (Wiley, New York, 1991).

J. W. Goodman, Introduction to Fourier optics(Englewood, CO: Roberts & Co. Publishers, 2005), 3rd ed.

M. Mishali and Y. C. Eldar, “From theory to practice: Sub-nyquist sampling of sparse wideband analog signals,” arXiv [0902.4291v1] (2009).

O. Katz, Y. Bromberg, and Y. Silberberg, “Ghost imaging via compressed sensing,” in “Frontiers in Optics (FiO),” (2009).

Z. Ben-Haim, Y. C. Eldar, and M. Elad, “Near-oracle performance of basis pursuit under random noise,” IEEE Trans. Signal Process. (submitted).