Abstract

Influence of the refractive index of the surrounding material on the performance of a C-shaped subwavelength aperture is investigated. The changes in the spectral response (0.6 μm to 6 μm wavelength range) and power throughput of the aperture in an optically opaque silver (Ag) film are described for two configurations: one where the film with the aperture is immersed in an infinite dielectric slab and the other where the metallic layer is immediately adjacent to a semi-infinite dielectric substrate. It is shown that, while the resonant wavelengths increase monotonically with refractive index for both cases, the rates of these increases, as well as the behavior of the power throughput, depend not only on the configuration, but also strongly on the transmission mode. These findings have important implications for the design of subwavelength aperture-enhanced devices.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
    [CrossRef]
  2. L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006).
    [CrossRef] [PubMed]
  3. L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009).
    [CrossRef]
  4. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
    [CrossRef] [PubMed]
  5. E. C. Kinzel and X. F. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express 17(10), 8036–8045 (2009).
    [CrossRef] [PubMed]
  6. R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
    [CrossRef] [PubMed]
  7. A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
    [CrossRef]
  8. J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
    [CrossRef]
  9. M. H. Lee, H. W. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 (2009).
    [CrossRef] [PubMed]
  10. H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
    [CrossRef] [PubMed]
  11. X. L. Shi and L. Hesselink, “Design of a C aperture to achieve λ/10 resolution and resonant transmission,” J. Opt. Soc. Am. B 21(7), 1305–1317 (2004).
    [CrossRef]
  12. X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
    [CrossRef]
  13. Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
    [CrossRef]
  14. P. Hansen, L. Hesselink, and B. Leen, “Design of a subwavelength bent C-aperture waveguide,” Opt. Lett. 32(12), 1737–1739 (2007).
    [CrossRef] [PubMed]
  15. L. Y. Sun and L. Hesselink, “Low-loss subwavelength metal C-aperture waveguide,” Opt. Lett. 31(24), 3606–3608 (2006).
    [CrossRef] [PubMed]
  16. Z. L. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, “High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett. 90(19), 191110 (2007).
    [CrossRef]
  17. J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102–081103 (2009).
    [CrossRef]
  18. B. A. Munk, Frequency selective surfaces: theory and design (John Wiley & Sons, New York, 2000).
  19. H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
    [CrossRef]
  20. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–1119 (1983).
    [CrossRef] [PubMed]
  21. J. Matteo and L. Hesselink, “Fractal extensions of near-field aperture shapes for enhanced transmission and resolution,” Opt. Express 13(2), 636–647 (2005).
    [CrossRef] [PubMed]
  22. Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
    [CrossRef]

2009

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009).
[CrossRef]

M. H. Lee, H. W. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 (2009).
[CrossRef] [PubMed]

E. C. Kinzel and X. F. Xu, “High efficiency excitation of plasmonic waveguides with vertically integrated resonant bowtie apertures,” Opt. Express 17(10), 8036–8045 (2009).
[CrossRef] [PubMed]

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102–081103 (2009).
[CrossRef]

2008

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

H. Guo, T. P. Meyrath, T. Zentgraf, N. Liu, L. Fu, H. Schweizer, and H. Giessen, “Optical resonances of bowtie slot antennas and their geometry and material dependence,” Opt. Express 16(11), 7756–7766 (2008).
[CrossRef] [PubMed]

2007

P. Hansen, L. Hesselink, and B. Leen, “Design of a subwavelength bent C-aperture waveguide,” Opt. Lett. 32(12), 1737–1739 (2007).
[CrossRef] [PubMed]

Z. L. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, “High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett. 90(19), 191110 (2007).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

2006

2005

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[CrossRef]

J. Matteo and L. Hesselink, “Fractal extensions of near-field aperture shapes for enhanced transmission and resolution,” Opt. Express 13(2), 636–647 (2005).
[CrossRef] [PubMed]

2004

2003

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

2002

X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

2001

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

1998

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

1983

Alexander, R. W.

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Brolo, A. G.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Brongersma, M. L.

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Catrysse, P. B.

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[CrossRef]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Ebbesen, T. W.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Fan, S.

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[CrossRef]

Fan, S. H.

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Fu, L.

Gao, H. W.

M. H. Lee, H. W. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 (2009).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Genet, C.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Giessen, H.

Gordon, R.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Guo, H.

Hansen, P.

Harris, J. S.

Z. L. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, “High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett. 90(19), 191110 (2007).
[CrossRef]

Hesselink, L.

Kang, J. H.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102–081103 (2009).
[CrossRef]

Kavanagh, K. L.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Kim, D. S.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102–081103 (2009).
[CrossRef]

Kima, T. J.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Kinzel, E. C.

Krishnan, A.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Latif, S.

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009).
[CrossRef]

Lee, J. W.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102–081103 (2009).
[CrossRef]

Lee, M. H.

M. H. Lee, H. W. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 (2009).
[CrossRef] [PubMed]

Leen, B.

Lezec, H. J.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Liu, N.

Long, L. L.

Martin-Moreno, L.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Matteo, J.

Matteo, J. A.

Z. L. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, “High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett. 90(19), 191110 (2007).
[CrossRef]

L. Tang, D. A. B. Miller, A. K. Okyay, J. A. Matteo, Y. Yuen, K. C. Saraswat, and L. Hesselink, “C-shaped nanoaperture-enhanced germanium photodetector,” Opt. Lett. 31(10), 1519–1521 (2006).
[CrossRef] [PubMed]

Meyrath, T. P.

Miller, D. A. B.

Mock, J. J.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Odom, T. W.

M. H. Lee, H. W. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 (2009).
[CrossRef] [PubMed]

Okyay, A. K.

Ordal, M. A.

Pang, Y.

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Park, Q. H.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102–081103 (2009).
[CrossRef]

Pendry, J.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Rao, Z. L.

Z. L. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, “High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett. 90(19), 191110 (2007).
[CrossRef]

Saraswat, K. C.

Schultz, S.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Schweizer, H.

Seo, M. A.

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102–081103 (2009).
[CrossRef]

Shi, X. L.

X. L. Shi and L. Hesselink, “Design of a C aperture to achieve λ/10 resolution and resonant transmission,” J. Opt. Soc. Am. B 21(7), 1305–1317 (2004).
[CrossRef]

X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Shin, H.

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[CrossRef]

Sinton, D.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Smith, D. R.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

Sun, L. Y.

Tang, L.

Thio, T.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Veronis, G.

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Ward, C. A.

Wolff, P. A.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Xu, X. F.

Yu, Z. F.

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Yuen, Y.

Zentgraf, T.

Acc. Chem. Res.

R. Gordon, D. Sinton, K. L. Kavanagh, and A. G. Brolo, “A new generation of sensors based on extraordinary optical transmission,” Acc. Chem. Res. 41(8), 1049–1057 (2008).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Z. F. Yu, G. Veronis, S. H. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Z. L. Rao, J. A. Matteo, L. Hesselink, and J. S. Harris, “High-intensity C-shaped nanoaperture vertical-cavity surface-emitting laser with controlled polarization,” Appl. Phys. Lett. 90(19), 191110 (2007).
[CrossRef]

J. W. Lee, M. A. Seo, D. S. Kim, J. H. Kang, and Q. H. Park, “Polarization dependent transmission through asymmetric C-shaped holes,” Appl. Phys. Lett. 94(8), 081102–081103 (2009).
[CrossRef]

Electron. Lett.

L. Tang, S. Latif, and D. A. B. Miller, “Plasmonic device in silicon CMOS,” Electron. Lett. 45(13), 706 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

X. L. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” Jpn. J. Appl. Phys. 41(Part 1, No. 3B), 1632–1635 (2002).
[CrossRef]

Nano Lett.

J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plasmon resonance spectra from individual nanoparticles,” Nano Lett. 3(4), 485–491 (2003).
[CrossRef]

M. H. Lee, H. W. Gao, and T. W. Odom, “Refractive index sensing using quasi one-dimensional nanoslit arrays,” Nano Lett. 9(7), 2584–2588 (2009).
[CrossRef] [PubMed]

Nature

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun.

A. Krishnan, T. Thio, T. J. Kima, H. J. Lezec, T. W. Ebbesen, P. A. Wolff, J. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Y. Pang, C. Genet, and T. W. Ebbesen, “Optical transmission through subwavelength slit apertures in metallic films,” Opt. Commun. 280(1), 10–15 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

H. Shin, P. B. Catrysse, and S. Fan, “Effect of the plasmonic dispersion relation on the transmission properties of subwavelength cylindrical holes,” Phys. Rev. B 72(8), 085436 (2005).
[CrossRef]

Phys. Rev. Lett.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005).
[CrossRef] [PubMed]

Other

B. A. Munk, Frequency selective surfaces: theory and design (John Wiley & Sons, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The schematic representation of the studied aperture, showing the location of the E-field probes used to evaluate the spectral response. The excitation radiation propagates in the –z direction; (b) Evolution of the E-field spectral response with increasing d, measured at point P1 in Fig. 1(a) and for the case of aperture on a dielectric substrate with n = 3.45. Inset: Spectral response as a function of thickness at point P2 in Fig. 1(a). The color scale of the inset is 10 times that of the main figure.

Fig. 2
Fig. 2

E-field distributions for d = 1000 nm at the wavelengths of the FP modes (random phase). The wavelengths are, from left to right: 1.51 μm, 1.16 μm, and 875 nm, corresponding to peaks B, C and E in Fig. 1(b), respectively. The x- and z-component are shown in the top and bottom panels, respectively. The plane shown corresponds to the x-z plane containing the point P1 of Fig. 1(a).

Fig. 4
Fig. 4

Spatial distribution of the normal component of the Poynting vector at the exit surface of the Ag film, at the wavelengths of (a) 1.14 μm for n = 2.5 and (b) 1.22 μm for n = 4. Negative sign corresponds to the Poynting vector component along the propagation direction of the exciting wave.

Fig. 3
Fig. 3

The shifts of the resonance wavelengths with n in an immersed aperture (a) and the aperture on a substrate (b), at point P1 [cf. Figure 1(a)]. Solid and open symbols represent the data for the ECSP peak [A in Fig. 1(b)] and one of the FP resonances [B in Fig. 1(b)], respectively. The change in resonance wavelength predicted by the analytical model (see text) is shown by the dashed lines. Power throughput at the wavelengths corresponding to the two peaks in spectral response as a function of n is shown in the corresponding insets. (c) Evolution of the spectral E-field response with n for the aperture-on-substrate case. The arrow identifies the peak corresponding to the surface mode D. Note the different abscissa scales for different values of n.

Metrics