Abstract

It is known that polarization-sensitive backscattering images of different objects in turbid media may show better contrasts than usual intensity images. Polarimetric image contrast depends on both target and background polarization properties and typically involves averaging over groups of pixels, corresponding to given areas of the image. By means of numerical modelling we show that the experimental arrangement, namely, the shape of turbid medium container, the optical properties of the container walls, the relative positioning of the absorbing, scattering and reflecting targets with respect to each other and to the container walls, as well as the choice of the image areas for the contrast calculations, can strongly affect the final results for both linearly and circularly polarized light.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38(18), 3937–3944 (1999).
    [CrossRef] [PubMed]
  2. G. W. Kattawar and M. J. Raković, “Virtues of mueller matrix imaging for underwater target detection,” Appl. Opt. 38(30), 6431–6438 (1999).
    [CrossRef] [PubMed]
  3. R. Nothdurft and G. Yao, “Expression of target optical properties in subsurface polarization-gated imaging,” Opt. Express 13(11), 4185–4195 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-11-4185 .
    [CrossRef] [PubMed]
  4. R. E. Nothdurft and G. Yao, “Effects of turbid media optical properties on object visibility in subsurface polarization imaging,” Appl. Opt. 45(22), 5532–5541 (2006).
    [CrossRef] [PubMed]
  5. S. G. Demos and R. R. Alfano, “Optical polarization imaging,” Appl. Opt. 36(1), 150–155 (1997).
    [CrossRef] [PubMed]
  6. S. G. Demos, H. Radousky, and R. Alfano, “Deep subsurface imaging in tissues using spectral and polarization filtering,” Opt. Express 7(1), 23–28 (2000), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-7-1-23 .
    [CrossRef] [PubMed]
  7. H. Shao, Y. He, Y. Shao, and H. Ma, “Contrast enhancement subsurface optical imaging with different incident polarization states”, Proc. of SPIE, 6047, 60470Z(1–6), (2006).
  8. G. C. Giakos, A. Molhokar, A. Orozco, V. Kumar, S. Sumrain, D. Mehta, A. Maniyedath, N. Ojha, and A. Medithe, “Laser imaging through scattering media”, IMTC 04. Proc. of the 21st IEEE, 1, 433 - 437 (2004).
  9. F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40(13), 9342–9345 (1989).
    [CrossRef]
  10. G. Yao, “Differential optical polarization imaging in turbid media with different embedded objects,” Opt. Commun. 241(4-6), 255–261 (2004).
    [CrossRef]
  11. P. W. Zhai, G. W. Kattawar, and P. Yang, “Mueller matrix imaging of targets under an air-sea interface,” Appl. Opt. 48(2), 250–260 (2009).
    [CrossRef] [PubMed]
  12. S. Huard, The Polarization of Light (Wiley, New York, 1997).
  13. R. A. Chipman, “Polarimetry” in Handbook of Optics, 2nd ed. M. Bass ed. (McGraw Hill, New York, 1995), vol. 2, chap 22.
  14. G. I. Bell, and S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold, New York, 1970).
  15. B. Kaplan, G. Ledanois, and B. Drévillon, “Mueller matrix of dense polystyrene latex sphere suspensions: measurements and monte carlo simulation,” Appl. Opt. 40(16), 2769–2777 (2001).
    [CrossRef] [PubMed]
  16. R. Kalibjian, “Stokes polarization vector and Mueller matrix for a corner-cube reflector,” Opt. Commun. 240(1-3), 39–68 (2004).
    [CrossRef]
  17. H. C. Van de Hulst, Light scattering by Small Particles (Dover, New York, 1981).

2009

2006

2005

2004

G. Yao, “Differential optical polarization imaging in turbid media with different embedded objects,” Opt. Commun. 241(4-6), 255–261 (2004).
[CrossRef]

R. Kalibjian, “Stokes polarization vector and Mueller matrix for a corner-cube reflector,” Opt. Commun. 240(1-3), 39–68 (2004).
[CrossRef]

2001

2000

1999

1997

1989

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40(13), 9342–9345 (1989).
[CrossRef]

Alfano, R.

Alfano, R. R.

Demos, S. G.

Drévillon, B.

Jordan, D. L.

Kalibjian, R.

R. Kalibjian, “Stokes polarization vector and Mueller matrix for a corner-cube reflector,” Opt. Commun. 240(1-3), 39–68 (2004).
[CrossRef]

Kaplan, B.

Kattawar, G. W.

Ledanois, G.

Lewis, G. D.

MacKintosh, F. C.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40(13), 9342–9345 (1989).
[CrossRef]

Nothdurft, R.

Nothdurft, R. E.

Pine, D. J.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40(13), 9342–9345 (1989).
[CrossRef]

Radousky, H.

Rakovic, M. J.

Roberts, P. J.

Weitz, D. A.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40(13), 9342–9345 (1989).
[CrossRef]

Yang, P.

Yao, G.

Zhai, P. W.

Zhu, J. X.

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40(13), 9342–9345 (1989).
[CrossRef]

Appl. Opt.

Opt. Commun.

G. Yao, “Differential optical polarization imaging in turbid media with different embedded objects,” Opt. Commun. 241(4-6), 255–261 (2004).
[CrossRef]

R. Kalibjian, “Stokes polarization vector and Mueller matrix for a corner-cube reflector,” Opt. Commun. 240(1-3), 39–68 (2004).
[CrossRef]

Opt. Express

Phys. Rev. B

F. C. MacKintosh, J. X. Zhu, D. J. Pine, and D. A. Weitz, “Polarization memory of multiply scattered light,” Phys. Rev. B 40(13), 9342–9345 (1989).
[CrossRef]

Other

H. C. Van de Hulst, Light scattering by Small Particles (Dover, New York, 1981).

H. Shao, Y. He, Y. Shao, and H. Ma, “Contrast enhancement subsurface optical imaging with different incident polarization states”, Proc. of SPIE, 6047, 60470Z(1–6), (2006).

G. C. Giakos, A. Molhokar, A. Orozco, V. Kumar, S. Sumrain, D. Mehta, A. Maniyedath, N. Ojha, and A. Medithe, “Laser imaging through scattering media”, IMTC 04. Proc. of the 21st IEEE, 1, 433 - 437 (2004).

S. Huard, The Polarization of Light (Wiley, New York, 1997).

R. A. Chipman, “Polarimetry” in Handbook of Optics, 2nd ed. M. Bass ed. (McGraw Hill, New York, 1995), vol. 2, chap 22.

G. I. Bell, and S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold, New York, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

The schematic of modelled set-up (a). Target immersion depth d was varied from 0.1 cm till 8.2 cm (0.006 mfp'-0.5 mfp'). Top view of the sample and laboratory coordinate system (b). Letters (R), (A) and (S) are for reflecting (mirror), absorbing and scattering targets, respectively. Scattering background properties were averaged over the dashed area (B) (see text).

Fig. 2
Fig. 2

Backscattering 9 × 9 cm2 simulated images of diagonal Mueller matrix coefficients of the sample at different target immersion depth. M11 is the reflectance of the sample (logarithmic scale). All walls of the container are completely absorbing.

Fig. 3
Fig. 3

Linear and circular OSC values of (a) reflecting, (b) scattering, (c) absorbing targets and (d) background versus target depth immersion (l s'). Open symbols (see 3(c) and 3(d)) show the values of OSCL,C when scattering and reflecting targets were removed. All walls of the container are completely absorbing.

Tables (1)

Tables Icon

Table 1 Normalized diagonal Mueller matrix coefficients of the scattering background medium averaged over the whole sample top surface. There were no targets immersed.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

S = ( I Q U V ) = ( I x + I y I x I y I 45 ° I 45 ° I L I R ) = ( < E E x x + E E y y > < E E x x E E y y > < E E x y + E E y x > i < E E x y E E y x > ) ,
ρ S = Q 2 + U 2 + V 2 I ( 0 ρ S 1 ) .
S o u t = M S i n .
1 c S ( r , Ω , t ) t + Ω S ( r , Ω , t ) = 4 π μ sca ( r ) M ( Ω ' Ω ) S ( r , Ω ' , t ) d Ω ' μ T ( r ) S ( r , Ω , t ) + Q ext ( r , Ω , t )
S = K [ S ] + Q ' ,
S i n ( α,β ) = ( 1 ,  cos α, sin α cos β, sin α sin β ) T ,
S o u t ( α,β ) = M S i n ( α,β ) ,
0 π 0 2 π ( M S i n ( α,β ) ) S i n ( α,β ) T dα dβ = M D ,
OSC = I co I cr I co + I cr ,
OSC L = M 22 + M 21 M 11 + M 12 ,
OSC C = M 44 + M 41 M 11 + M 14 ,
OSC L tar (b) = M 22  ij + M 21 ij M 11  ij + M 12  ij ,    OSC C tar (b) = M 44  ij + M 41 ij M 11  ij + M 14  ij ,     (i,j)  T (B) .
Contrast = | OSC k tar OSC k b | / ( OSC k tar + OSC k b ) ,   k = L,C .
OSC L = M 33 + M 31 M 11 + M 13 .

Metrics