Abstract

We have demonstrated broad bandwidth large area (229 mm x 114 mm) multilayer dielectric diffraction gratings for the efficient compression of high energy 800 nm laser pulses at high average power. The gratings are etched in the top layers of an aperiodic (Nb0.5Ta0.5)2O5-SiO2 multilayer coating deposited by ion beam sputtering. The mean efficiency of the grating across the area is better than 97% at the center wavelength and remains above 96% at wavelengths between 820 nm and 780 nm. The gratings were used to compress 5.5 J pulses from a Ti:sapphire laser with an efficiency above 80 percent.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [CrossRef]
  2. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
    [CrossRef]
  3. M. D. Perry, D. Pennington, B. C. Stuart, G. Tietbohl, J. A. Britten, C. Brown, S. Herman, B. Golick, M. Kartz, J. Miller, H. T. Powell, M. Vergino, and V. Yanovsky, “Petawatt laser pulses,” Opt. Lett. 24(3), 160–162 (1999).
    [CrossRef] [PubMed]
  4. C. B. Edwards, R. M. Allott, J. L. Collier, C. N. Danson, M. H. R. Hutchinson, D. Neely, and B. E. Wyborn, “Vulcan upgrade: a petawatt laser facility for experiments at 10^21 Wcm^-2,” in ECLIM 2000: 26th European Conference on Laser Interaction with Matter (2001), pp. 63–69.
  5. Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
    [CrossRef]
  6. A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).
  7. M. D. Perry, R. D. Boyd, J. A. Britten, D. Decker, B. W. Shore, C. Shannon, and E. Shults, “High-efficiency multilayer dielectric diffraction gratings,” Opt. Lett. 20(8), 940–942 (1995).
    [CrossRef] [PubMed]
  8. J. A. Britten, W. A. Molander, A. M. Komashko, and C. P. Barty, “Multilayer dielectric gratings for petawatt-class laser systems,” in Laser-Induced Damage in Optical Materials:2003, H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (SPIE, 2004), pp. 1–7.
  9. F. Canova, R. Clady, J. P. Chambaret, M. Flury, S. Tonchev, R. Fechner, and O. Parriaux, “High-efficiency, broad band, high-damage threshold high-index gratings for femtosecond pulse compression,” Opt. Express 15(23), 15324–15334 (2007).
    [CrossRef] [PubMed]
  10. P. P. Lu, K.-X. Sun, R. L. Byer, J. A. Britten, H. T. Nguyen, J. D. Nissen, C. C. Larson, M. D. Aasen, T. C. Carlson, and C. R. Hoaglan, “Precise diffraction efficiency measurements of large-area greater-than-99%-efficient dielectric gratings at the Littrow angle,” Opt. Lett. 34(11), 1708–1710 (2009).
    [CrossRef] [PubMed]
  11. J. Neauport, E. Lavastre, G. Razé, G. Dupuy, N. Bonod, M. Balas, G. de Villele, J. Flamand, S. Kaladgew, and F. Desserouer, “Effect of electric field on laser induced damage threshold of multilayer dielectric gratings,” Opt. Express 15(19), 12508–12522 (2007).
    [CrossRef] [PubMed]
  12. J. J. Rocca, Y. Wang, M. A. Larotonda, B. M. Luther, M. Berrill, and D. Alessi, “Saturated 13.2 nm high-repetition-rate laser in nickellike cadmium,” Opt. Lett. 30(19), 2581–2583 (2005).
    [CrossRef] [PubMed]
  13. Y. Wang, M. Larotonda, B. Luther, D. Alessi, M. Berrill, V. Shlyaptsev, and J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9nm and gain down to 10.9nm,” Phys. Rev. A 72(5), 053807 (2005).
    [CrossRef]
  14. B. M. Luther, Y. Wang, M. A. Larotonda, D. Alessi, M. Berrill, M. C. Marconi, J. J. Rocca, and V. N. Shlyaptsev, “Saturated high-repetition-rate 18.9-nm tabletop laser in nickellike molybdenum,” Opt. Lett. 30(2), 165–167 (2005).
    [CrossRef] [PubMed]

2009

2007

2005

2004

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

1999

1995

1991

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

1985

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

1969

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Aasen, M. D.

Alessi, D.

Balas, M.

Berrill, M.

Bonod, N.

Boyd, R. D.

Britten, J. A.

Brown, C.

Byer, R. L.

Canova, F.

Carlson, T. C.

Chambaret, J. P.

Clady, R.

de Villele, G.

Decker, D.

Desserouer, F.

Dupuy, G.

Fechner, R.

Flamand, J.

Flury, M.

Fujita, H.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Golick, B.

Herman, S.

Hoaglan, C. R.

Izawa, Y.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Jitsuno, T.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Kaladgew, S.

Kanabe, T.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Kartz, M.

Kawasaki, T.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Kitagawa, Y.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Kitamura, H.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Kodama, R.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Larotonda, M.

Y. Wang, M. Larotonda, B. Luther, D. Alessi, M. Berrill, V. Shlyaptsev, and J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9nm and gain down to 10.9nm,” Phys. Rev. A 72(5), 053807 (2005).
[CrossRef]

Larotonda, M. A.

Larson, C. C.

Lavastre, E.

Lu, P. P.

Luther, B.

Y. Wang, M. Larotonda, B. Luther, D. Alessi, M. Berrill, V. Shlyaptsev, and J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9nm and gain down to 10.9nm,” Phys. Rev. A 72(5), 053807 (2005).
[CrossRef]

Luther, B. M.

Marconi, M. C.

Matsuo, S.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Miller, J.

Miyanaga, N.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Mourou, G.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Neauport, J.

Nguyen, H. T.

Nissen, J. D.

Parriaux, O.

Pennington, D.

Perry, M. D.

Powell, H. T.

Razé, G.

Rocca, J.

Y. Wang, M. Larotonda, B. Luther, D. Alessi, M. Berrill, V. Shlyaptsev, and J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9nm and gain down to 10.9nm,” Phys. Rev. A 72(5), 053807 (2005).
[CrossRef]

Rocca, J. J.

Sakabe, S.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Shannon, C.

Shigemori, K.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Shlyaptsev, V.

Y. Wang, M. Larotonda, B. Luther, D. Alessi, M. Berrill, V. Shlyaptsev, and J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9nm and gain down to 10.9nm,” Phys. Rev. A 72(5), 053807 (2005).
[CrossRef]

Shlyaptsev, V. N.

Shore, B. W.

Shults, E.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Stuart, B. C.

Sun, K.-X.

Svakhin, A. S.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Sychugov, V. A.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Tietbohl, G.

Tikhomirov, A. E.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Tonchev, S.

Treacy, E. B.

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Vergino, M.

Wang, Y.

Yanovsky, V.

Yoshida, H.

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

IEEE J. Quantum Electron.

E. B. Treacy, “Optical Pulse Compression With Diffraction Gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Y. Kitagawa, H. Fujita, R. Kodama, H. Yoshida, S. Matsuo, T. Jitsuno, T. Kawasaki, H. Kitamura, T. Kanabe, S. Sakabe, K. Shigemori, N. Miyanaga, and Y. Izawa, “Prepulse-Free Petawatt Laser for a Fast Ignitor,” IEEE J. Quantum Electron. 40(3), 281–293 (2004).
[CrossRef]

Opt. Commun.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56(3), 219–221 (1985).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

Y. Wang, M. Larotonda, B. Luther, D. Alessi, M. Berrill, V. Shlyaptsev, and J. Rocca, “Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9nm and gain down to 10.9nm,” Phys. Rev. A 72(5), 053807 (2005).
[CrossRef]

Sov. Phys. Tech. Phys.

A. S. Svakhin, V. A. Sychugov, and A. E. Tikhomirov, “Efficient diffraction elements for TE-polarized waves,” Sov. Phys. Tech. Phys. 36, 1038–1040 (1991).

Other

J. A. Britten, W. A. Molander, A. M. Komashko, and C. P. Barty, “Multilayer dielectric gratings for petawatt-class laser systems,” in Laser-Induced Damage in Optical Materials:2003, H. Guenther, N. Kaiser, K. L. Lewis, M. J. Soileau, and C. J. Stolz, eds. (SPIE, 2004), pp. 1–7.

C. B. Edwards, R. M. Allott, J. L. Collier, C. N. Danson, M. H. R. Hutchinson, D. Neely, and B. E. Wyborn, “Vulcan upgrade: a petawatt laser facility for experiments at 10^21 Wcm^-2,” in ECLIM 2000: 26th European Conference on Laser Interaction with Matter (2001), pp. 63–69.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of a dielectric multilayer deposited on top of a fused silica substrate. The reflective multilayer stack has 20 layers.

Fig. 2
Fig. 2

Simulated diffraction efficiency map of the −1st order of an 800 nm grating operating at an angle of 38 degrees as a function of etch depth and duty cycle of the line pattern. The contours indicate constant diffraction efficiency. The cut shows the variation of diffraction efficiency versus etch depth at the optimum, 30% duty cycle.

Fig. 3
Fig. 3

Simulated diffraction efficiency of the −1st order of an 800 nm grating operating at an angle of 38 degrees. (i) Optimum 270 nm groove depth with a 30% duty cycle (ii) 260 nm groove depth with a 36% duty cycle.

Fig. 4
Fig. 4

S-polarization spectral response of the asymmetric 20 layer MLD high reflector. Simulated (a) reflection at 35 degrees, measured reflection at 35 (b) and 55 (c) degrees.

Fig. 5
Fig. 5

Map of the −1st order diffraction efficiency of a 229 mm x 114 mm grating measured at an operating angle of 38 degrees at a wavelength of 800 nm. The mean efficiency is 97.3% with a standard deviation of 0.3%. The histogram shows the distribution of diffraction efficiency over the entire grating area.

Fig. 6
Fig. 6

Diffraction efficiency of the −1st order of an 800 nm grating operating at 38 degrees: The dotted line shows the design simulation of the diffracted light with a 270 nm groove depth. The circles are the measured mean efficiencies of the fabricated 229 mm x 114 mm grating.

Fig. 7
Fig. 7

Schematic diagram of the setup used to determine damage threshold.

Fig. 8
Fig. 8

Photograph of two 229mm x 114 mm dielectric gratings that are part of a vacuum pulse compressor for high energy Ti:sapphire laser pulses.

Tables (2)

Tables Icon

Table 1 Measured −1st order diffraction efficiencies for four different 229 mm x 114 mm gratings (%)

Tables Icon

Table 2 Damage threshold of MLD stack and MLD gratings at 55 degrees

Metrics