Abstract

We present a detailed experimental and theoretical study of plasmon Talbot effect. A theoretical model based on simple scattering theory is developed to describe the Talbot self-imaging pattern generated by a linear arrangement of cylindrical nanostructures forming a periodic array. We first show the experimental observation of plasmon Talbot carpets created by propagating surface plasmon polaritons (SPP) interacting with cylindrical nanostructures positioned on a thin Au film using leakage radiation microscopy. Such images provide information on the distribution of the plasmon intensity close to the nanostructures. Next, heterodyne interferometer based near-field imaging is carried out to extract information on the plasmonic modes forming the Talbot carpet deployment. We report the experimental observation of Talbot focal spots with dimensions down toλ/4.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings”, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).
  3. F. J. Garcia de Abajo, “Light Scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
    [CrossRef]
  4. A. G. Curto and F. Javier García de Abajo, “Near-Field Optical Phase Antennas for Long-Range Plasmon Coupling,” Nano Lett. 8(8), 2479–2484 (2008).
    [CrossRef] [PubMed]
  5. S. I. Bozhevolnyi and F. A. Pudonin, “Two-Dimensionsal Micro-Optics of Surface Plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
    [CrossRef]
  6. H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
    [CrossRef]
  7. J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
    [CrossRef]
  8. A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
    [CrossRef]
  9. M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
    [CrossRef]
  10. A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
    [CrossRef] [PubMed]
  11. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole Array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
    [CrossRef] [PubMed]
  12. H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401–407 (1836).
  13. M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
    [CrossRef]
  14. A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413–415 (1971).
    [CrossRef]
  15. A. W. Lohmann, “An array illuminator based on the Talbot effect,” Optik (Stuttg.) 79, 41–45 (1988).
  16. M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129(3-4), 167–172 (1996).
    [CrossRef]
  17. F. M. Huang, N. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
    [CrossRef]
  18. M. R. Dennis, N. I. Zheludev, and F. J. García de Abajo, “The plasmon Talbot effect,” Opt. Express 15(15), 9692–9700 (2007).
    [CrossRef] [PubMed]
  19. A. A. Maradudin and T. A. Leskova, “The Talbot effect for a surface Plasmon polariton,” N. J. Phys. 11(3), 033004 (2009).
    [CrossRef]
  20. W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express 17(22), 19757 (2009).
    [CrossRef] [PubMed]
  21. A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
    [CrossRef]
  22. J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15(17), 10533–10539 (2007).
    [CrossRef] [PubMed]
  23. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
    [CrossRef] [PubMed]
  24. A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
    [CrossRef]
  25. J. W. Goodman, Introduction to Fourier Optics, 3rd Ed. (Robert & Com., 2005).
  26. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19(8), 1169–1176 (2001).
    [CrossRef]
  27. M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local Observations of Phase Singularities in Optical Fields in Waveguide Structures,” Phys. Rev. Lett. 85(2), 294–297 (2000).
    [CrossRef] [PubMed]
  28. H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating Focused Plasmons by Non-collinear Phase-matching on Functional Gratings,” Nano Lett. 5(11), 2144–2148 (2005).
    [CrossRef] [PubMed]

2009 (3)

A. A. Maradudin and T. A. Leskova, “The Talbot effect for a surface Plasmon polariton,” N. J. Phys. 11(3), 033004 (2009).
[CrossRef]

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[CrossRef]

W. Zhang, C. Zhao, J. Wang, and J. Zhang, “An experimental study of the plasmonic Talbot effect,” Opt. Express 17(22), 19757 (2009).
[CrossRef] [PubMed]

2008 (2)

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole Array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

A. G. Curto and F. Javier García de Abajo, “Near-Field Optical Phase Antennas for Long-Range Plasmon Coupling,” Nano Lett. 8(8), 2479–2484 (2008).
[CrossRef] [PubMed]

2007 (4)

2006 (2)

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

2005 (4)

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
[CrossRef] [PubMed]

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating Focused Plasmons by Non-collinear Phase-matching on Functional Gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

2004 (1)

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (1)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

2001 (1)

2000 (1)

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local Observations of Phase Singularities in Optical Fields in Waveguide Structures,” Phys. Rev. Lett. 85(2), 294–297 (2000).
[CrossRef] [PubMed]

1997 (1)

S. I. Bozhevolnyi and F. A. Pudonin, “Two-Dimensionsal Micro-Optics of Surface Plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
[CrossRef]

1996 (2)

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[CrossRef]

M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129(3-4), 167–172 (1996).
[CrossRef]

1988 (1)

A. W. Lohmann, “An array illuminator based on the Talbot effect,” Optik (Stuttg.) 79, 41–45 (1988).

1971 (1)

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413–415 (1971).
[CrossRef]

1836 (1)

H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401–407 (1836).

Archambault, A.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[CrossRef]

Aussenegg, F. R.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

Balistreri, M. L. M.

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19(8), 1169–1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local Observations of Phase Singularities in Optical Fields in Waveguide Structures,” Phys. Rev. Lett. 85(2), 294–297 (2000).
[CrossRef] [PubMed]

Barnes, W. L.

Baudrion, A.-L.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Berry, M. V.

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and F. A. Pudonin, “Two-Dimensionsal Micro-Optics of Surface Plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
[CrossRef]

Cesario, J.

Chen, Y.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole Array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

F. M. Huang, N. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Cheylan, S.

Curto, A. G.

A. G. Curto and F. Javier García de Abajo, “Near-Field Optical Phase Antennas for Long-Range Plasmon Coupling,” Nano Lett. 8(8), 2479–2484 (2008).
[CrossRef] [PubMed]

Dennis, M. R.

Dereux, A.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Devaux, E.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Ditlbacher, H.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

Drezet, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
[CrossRef] [PubMed]

Ebbesen, T.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Ebbesen, T. W.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Enoch, S.

Escalante, M.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating Focused Plasmons by Non-collinear Phase-matching on Functional Gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

Fedotov, V. A.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole Array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Galler, N.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

Garcia de Abajo, F. J.

F. M. Huang, N. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

F. J. Garcia de Abajo, “Light Scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

García de Abajo, F. J.

Girard, C.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Goncharenko, A. M.

M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129(3-4), 167–172 (1996).
[CrossRef]

Gonzalez, M. U.

J. Cesario, M. U. Gonzalez, S. Cheylan, W. L. Barnes, S. Enoch, and R. Quidant, “Coupling localized and extended plasmons to improve the light extraction through metal films,” Opt. Express 15(17), 10533–10539 (2007).
[CrossRef] [PubMed]

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Greffet, J. J.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[CrossRef]

Hohenau, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

Huang, F. M.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole Array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

F. M. Huang, N. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Jahns, J.

M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129(3-4), 167–172 (1996).
[CrossRef]

Javier García de Abajo, F.

A. G. Curto and F. Javier García de Abajo, “Near-Field Optical Phase Antennas for Long-Range Plasmon Coupling,” Nano Lett. 8(8), 2479–2484 (2008).
[CrossRef] [PubMed]

Kao, T. S.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole Array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Khilo, N. A.

M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129(3-4), 167–172 (1996).
[CrossRef]

Klein, S.

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[CrossRef]

Korterik, J. P.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating Focused Plasmons by Non-collinear Phase-matching on Functional Gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19(8), 1169–1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local Observations of Phase Singularities in Optical Fields in Waveguide Structures,” Phys. Rev. Lett. 85(2), 294–297 (2000).
[CrossRef] [PubMed]

Krenn, J. R.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
[CrossRef] [PubMed]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

Kuipers, L.

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19(8), 1169–1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local Observations of Phase Singularities in Optical Fields in Waveguide Structures,” Phys. Rev. Lett. 85(2), 294–297 (2000).
[CrossRef] [PubMed]

Lacroute, Y.

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Leitner, A.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

Leskova, T. A.

A. A. Maradudin and T. A. Leskova, “The Talbot effect for a surface Plasmon polariton,” N. J. Phys. 11(3), 033004 (2009).
[CrossRef]

Lohmann, A. W.

A. W. Lohmann, “An array illuminator based on the Talbot effect,” Optik (Stuttg.) 79, 41–45 (1988).

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413–415 (1971).
[CrossRef]

Maradudin, A. A.

A. A. Maradudin and T. A. Leskova, “The Talbot effect for a surface Plasmon polariton,” N. J. Phys. 11(3), 033004 (2009).
[CrossRef]

Marquier, F.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[CrossRef]

Offerhaus, H. L.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating Focused Plasmons by Non-collinear Phase-matching on Functional Gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

Pudonin, F. A.

S. I. Bozhevolnyi and F. A. Pudonin, “Two-Dimensionsal Micro-Optics of Surface Plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
[CrossRef]

Quidant, R.

Schider, G.

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

Segerink, F. B.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating Focused Plasmons by Non-collinear Phase-matching on Functional Gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

Silva, D. E.

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413–415 (1971).
[CrossRef]

Steinberger, B.

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
[CrossRef] [PubMed]

Stepanov, A. L.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524 (2005).
[CrossRef] [PubMed]

A. Hohenau, J. R. Krenn, A. L. Stepanov, A. Drezet, H. Ditlbacher, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Dielectric optical elements for surface plasmons,” Opt. Lett. 30(8), 893–895 (2005).
[CrossRef] [PubMed]

Talbot, H. F.

H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401–407 (1836).

Teperik, T. V.

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[CrossRef]

Testorf, M.

M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129(3-4), 167–172 (1996).
[CrossRef]

van den Bergen, B.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating Focused Plasmons by Non-collinear Phase-matching on Functional Gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

van Hulst, N. F.

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating Focused Plasmons by Non-collinear Phase-matching on Functional Gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Phase Mapping of Optical Fields in Integrated Optical Waveguide Structures,” J. Lightwave Technol. 19(8), 1169–1176 (2001).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local Observations of Phase Singularities in Optical Fields in Waveguide Structures,” Phys. Rev. Lett. 85(2), 294–297 (2000).
[CrossRef] [PubMed]

Wang, J.

Weeber, J.-C.

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Zhang, J.

Zhang, W.

Zhao, C.

Zheludev, N.

F. M. Huang, N. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Zheludev, N. I.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole Array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

M. R. Dennis, N. I. Zheludev, and F. J. García de Abajo, “The plasmon Talbot effect,” Opt. Express 15(15), 9692–9700 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

H. Ditlbacher, J. R. Krenn, G. Schider, A. Leitner, and F. R. Aussenegg, “Two-dimensional optics with surface plasmon polaritons,” Appl. Phys. Lett. 81(10), 1762–1764 (2002).
[CrossRef]

A. Drezet, A. L. Stepanov, H. Ditlbacher, A. Hohenau, B. Steinberger, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “Surface plasmon propagation in an elliptical corral,” Appl. Phys. Lett. 86(7), 74104 (2005).
[CrossRef]

F. M. Huang, N. Zheludev, Y. Chen, and F. J. Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

A. Drezet, A. Hohenau, A. L. Stepanov, H. Ditlbacher, B. Steinberger, N. Galler, F. R. Aussenegg, A. Leitner, and J. R. Krenn, “How to erase surface plasmon fringes,” Appl. Phys. Lett. 89(9), 091117 (2006).
[CrossRef]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

M. V. Berry and S. Klein, “Integer, fractional and fractal Talbot effects,” J. Mod. Opt. 43, 2139–2164 (1996).
[CrossRef]

N. J. Phys. (1)

A. A. Maradudin and T. A. Leskova, “The Talbot effect for a surface Plasmon polariton,” N. J. Phys. 11(3), 033004 (2009).
[CrossRef]

Nano Lett. (3)

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole Array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

A. G. Curto and F. Javier García de Abajo, “Near-Field Optical Phase Antennas for Long-Range Plasmon Coupling,” Nano Lett. 8(8), 2479–2484 (2008).
[CrossRef] [PubMed]

H. L. Offerhaus, B. van den Bergen, M. Escalante, F. B. Segerink, J. P. Korterik, and N. F. van Hulst, “Creating Focused Plasmons by Non-collinear Phase-matching on Functional Gratings,” Nano Lett. 5(11), 2144–2148 (2005).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (2)

A. W. Lohmann and D. E. Silva, “An interferometer based on the Talbot effect,” Opt. Commun. 2(9), 413–415 (1971).
[CrossRef]

M. Testorf, J. Jahns, N. A. Khilo, and A. M. Goncharenko, “Talbot effect for oblique angle of light propagation,” Opt. Commun. 129(3-4), 167–172 (1996).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Optik (Stuttg.) (1)

A. W. Lohmann, “An array illuminator based on the Talbot effect,” Optik (Stuttg.) 79, 41–45 (1988).

Philos. Mag. (1)

H. F. Talbot, “Facts relating to optical science, No. IV,” Philos. Mag. 9, 401–407 (1836).

Phys. Rev. B (3)

A. Archambault, T. V. Teperik, F. Marquier, and J. J. Greffet, “Surface plasmon Fourier optics,” Phys. Rev. B 79(19), 195414 (2009).
[CrossRef]

M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, A. Dereux, A. L. Stepanov, J. R. Krenn, E. Devaux, and T. W. Ebbesen, “Design, near-field characterization, and modeling of 45 surface-plasmon Bragg mirrors,” Phys. Rev. B 73(15), 155416 (2006).
[CrossRef]

J.-C. Weeber, Y. Lacroute, A. Dereux, E. Devaux, T. Ebbesen, C. Girard, M. U. Gonzalez, and A.-L. Baudrion, “Near-field characterization of Bragg mirrors engraved in surface plasmon waveguides,” Phys. Rev. B 70(23), 235406 (2004).
[CrossRef]

Phys. Rev. Lett. (2)

S. I. Bozhevolnyi and F. A. Pudonin, “Two-Dimensionsal Micro-Optics of Surface Plasmons,” Phys. Rev. Lett. 78(14), 2823–2826 (1997).
[CrossRef]

M. L. M. Balistreri, J. P. Korterik, L. Kuipers, and N. F. van Hulst, “Local Observations of Phase Singularities in Optical Fields in Waveguide Structures,” Phys. Rev. Lett. 85(2), 294–297 (2000).
[CrossRef] [PubMed]

Rev. Mod. Phys. (1)

F. J. Garcia de Abajo, “Light Scattering by particle and hole arrays,” Rev. Mod. Phys. 79(4), 1267–1290 (2007).
[CrossRef]

Other (2)

H. Raether, “Surface Plasmons on Smooth and Rough Surfaces and on Gratings”, Vol. 111 of Springer Tracts in Modern Physics (Springer-Verlag, Berlin, 1988).

J. W. Goodman, Introduction to Fourier Optics, 3rd Ed. (Robert & Com., 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Plasmonic Talbot-like distribution simulated numerically for an incident wavelength of 785 nm at periods (a) 800 nm and (b) 1200 nm. The SPP propagation direction is from left to right.

Fig. 2
Fig. 2

Spatial frequency of the local intensity distribution as a function of the nanostructure period. The blue curve represents the Talbot distance for each period. The vertical red and green lines divide the plot into three regions.

Fig. 3
Fig. 3

Leakage radiation images of plasmonic Talbot carpets for two different periods. (a) 800 nm and (b) 1200 nm. The small circles in the images represent the approximate position of the nanostructures. The incident wavelength of light used in the experiment is 790 nm is incident from the left to right. Reflection of the SPP from the nanostructures creates high intensity regions which saturates the image on the reflection side.

Fig. 4
Fig. 4

(a) Optical zoom of leakage radiation image of plasmonic Talbot for a period of 800 nm. The small circles represents the approximate position of the nanostructures. (b) Intensity profile along the red dashed line in (a). The period of the intensity profile is calculated to be 785 nm, which is close to the actual separation of the nanostructures. (c) Evolution of the intensity hot-spots taken at consecutive rows close to the structures. We can observe the retrieval of the periodicity of the array at several locations in the image close to the nanostructures. The vertical dashed line in (c) is drawn along the peaks to show their spatial translations with respect to the first row.

Fig. 5
Fig. 5

(a) Observed near-field amplitude/phase image E cos ( ϕ ) of the SPP propagation towards an array of the nanostructures with a period of 1200 nm. The black circles represent nanostructure positions as obtained from the shear force detection. (b) FFT of the complex optical field E ( x , y ) = E 0 ( x , y ) exp [ i ϕ ( x , y ) ] of (a). The red circle indicates the light cone. The central gray part depicts a filtering of the free space scattered light. (c) Simulated near-field amplitude/phase image E cos ( ϕ ) corresponding to the parameters in (a). (d) FFT of the simulated optical field in (c).

Fig. 6
Fig. 6

(a) Optical near-field amplitude/phase image E cos ( ϕ ) in Fig. 5(a) after filtering in the Fourier space. (b) Magnified image of the region inside the white square in (a). (c) Intensity image of the same region.

Fig. 7
Fig. 7

(a) Shear-force image of the nanostructures. (b) Near-field intensity image of the field collected by the optical probe. The small white squares are regions of special interest. The structures have a period of 800 nm and separation between the rows is 400 nm.

Fig. 8
Fig. 8

(a) The Talbot hot-spot in the transmission side of the particle array. The red and blue circles represent the transversal and longitudinal directions. (b) Intensity profiles in the transverse (red) and longitudinal direction (blue). (c) The Talbot hot-spot in the reflection side of the particle array. (d) Intensity profiles in the transverse (red) and longitudinal direction (blue).

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

G ( R ) = e i k p R | R | ,
E ( R ) = E i n c ( R ) + n G ( R R n ) p n = E i n c ( R ) + α n G ( R R n ) E ( R n ) .
E ( R n ) = E i n c ( R ) + α n n ' G ( R n R n ' ) E ( R n ' ) .
E = E i n c + G E ,
E = ( I d G ) 1 E i n c ,
E ( x , y ) = E 0 ( x , y ) · exp [ i ϕ ( x , y ) ] ,

Metrics