Abstract

We report a more than 150 W spectrally-clean continuous wave Raman fiber laser at 1120 nm with an optical efficiency of 85%. A ~30 m standard single mode silica fiber is used as Raman gain fiber to avoid second Stokes emission. A spectrally asymmetric resonator (in the sense of mirror reflection bandwidth) with usual fiber Bragg gratings is designed to minimize the laser power lost into the unwanted direction, even when the effective reflectivity of the rear fiber Bragg grating becomes as low as 81.5%.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1-6), 329–335 (2003).
    [CrossRef]
  2. R. Vallée, E. Bélanger, B. Déry, M. Bernier, and D. Faucher, “Highly Efficient and High-Power Raman Fiber Laser Based on Broadband Chirped Fiber Bragg Gratings,” J. Lightwave Technol. 24(12), 5039–5043 (2006).
    [CrossRef]
  3. P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun. 237(1-3), 201–212 (2004).
    [CrossRef]
  4. J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
    [CrossRef]
  5. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
    [CrossRef] [PubMed]
  6. Y. Emori, K. Tanaka, C. Headley, and A. Fujisaki, High-Power Cascaded Raman Fiber Laser with 41-W Output Power at 1480-nm Band,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFI2.
  7. L. Taylor, Y. Feng, and D. B. Calia, “High power narrowband 589 nm frequency doubled fibre laser source,” Opt. Express 17(17), 14687–14693 (2009).
    [CrossRef] [PubMed]
  8. Y. Feng, L. Taylor, and D. Bonaccini Calia, “25 W Raman-fiber-amplifier-based 589 nm laser for laser guide star,” Opt. Express 17(21), 19021–19026 (2009).
    [CrossRef]
  9. B. Burgoyne, N. Godbout, and S. Lacroix, “Transient regime in a nth-order cascaded CW Raman fiber laser,” Opt. Express 12(6), 1019–1024 (2004).
    [CrossRef] [PubMed]
  10. Y. Feng and K. Ueda, “Self-pulsed fiber Raman master oscillator power amplifiers,” Opt. Express 13(7), 2611–2616 (2005).
    [CrossRef] [PubMed]
  11. Y. Feng, L. Taylor, and D. Bonaccini Calia, “Multiwatts narrow linewidth fiber Raman amplifiers,” Opt. Express 16(15), 10927–10932 (2008).
    [CrossRef] [PubMed]
  12. D. Y. Shen, L. Pearson, P. Wang, J. K. Sahu, and W. A. Clarkson, “Broadband Tm-doped superfluorescent fiber source with 11 W single-ended output power,” Opt. Express 16(15), 11021–11026 (2008).
    [CrossRef] [PubMed]

2009 (2)

2008 (3)

2006 (1)

2005 (1)

2004 (2)

B. Burgoyne, N. Godbout, and S. Lacroix, “Transient regime in a nth-order cascaded CW Raman fiber laser,” Opt. Express 12(6), 1019–1024 (2004).
[CrossRef] [PubMed]

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun. 237(1-3), 201–212 (2004).
[CrossRef]

2003 (2)

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[CrossRef]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1-6), 329–335 (2003).
[CrossRef]

Babin, S. A.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1-6), 329–335 (2003).
[CrossRef]

Bélanger, E.

Bernier, M.

Bonaccini Calia, D.

Bouteiller, J.-C.

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[CrossRef]

Burgoyne, B.

Calia, D. B.

Churkin, D. V.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1-6), 329–335 (2003).
[CrossRef]

Clarkson, W. A.

Déry, B.

Faucher, D.

Feng, Y.

Godbout, N.

Ismagulov, A. E.

Kablukov, S. I.

Lacroix, S.

Pearson, L.

Podivilov, E. V.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008).
[CrossRef] [PubMed]

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1-6), 329–335 (2003).
[CrossRef]

Randoux, S.

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun. 237(1-3), 201–212 (2004).
[CrossRef]

Sahu, J. K.

Shen, D. Y.

Suret, P.

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun. 237(1-3), 201–212 (2004).
[CrossRef]

Taylor, L.

Ueda, K.

Vallée, R.

Wang, P.

IEEE Photon. Technol. Lett. (1)

J.-C. Bouteiller, “Spectral modeling of Raman fiber lasers,” IEEE Photon. Technol. Lett. 15(12), 1698–1700 (2003).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Commun. (2)

S. A. Babin, D. V. Churkin, and E. V. Podivilov, “Intensity interactions in cascades of a two-stage Raman fiber laser,” Opt. Commun. 226(1-6), 329–335 (2003).
[CrossRef]

P. Suret and S. Randoux, “Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models,” Opt. Commun. 237(1-3), 201–212 (2004).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Other (1)

Y. Emori, K. Tanaka, C. Headley, and A. Fujisaki, High-Power Cascaded Raman Fiber Laser with 41-W Output Power at 1480-nm Band,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CFI2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the 1120 nm Raman fiber laser pumped by a 1070 nm Yb fiber laser.

Fig. 2
Fig. 2

(a) 1120 nm output power as a function of 1070 nm pump power, where the 1070 nm contamination is already excluded; (b) an 1120 nm laser output spectrum at full power.

Fig. 3
Fig. 3

FWHM linewidth as a function of 1120 nm output power (a), the spectra of the laser output (b) and laser leakage through FBG1 (c) at different power levels, 1 W, 27 W, 63 W, and 153 W (black, red, green, and blue curves), respectively. The spectrum of the leaked laser light at 1 W is not shown, because at this point the leaked light is very weak and not possible to measure without changing the setup.

Fig. 4
Fig. 4

(a) experimental data (points) and numerical fitting (lines) to the 1120 nm laser output, 1120 nm laser leakage through the rear FBG1, and unused pump as a function of pump power; (b) effective reflectivities of the rear FBG1 and outcoupling FBG2 as a function of pump power, resulted from numerical fitting. Note data are plotted in different scales.

Fig. 5
Fig. 5

Calculated signal and pump power distribution along the fiber at full power.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

P z = g r υ P υ R P I + + I + 2 h υ P B α P P I + z = g r P I + + h υ R B α R I + I z = g r P I + h υ R B + α R I
P ( 0 ) = P 0 I + ( 0 ) = I - ( 0 ) R A I ( L ) = I + ( L ) R B
P A P B = 1 R A 1 R B R B R A

Metrics