Abstract

Angle-resolved measurements on a cathodoluminescence (CL) detection system equipped with a 200 keV transmission electron microscope were performed on a 1-dimensional silver grating. The dispersion curves of surface plasmon polaritons (SPPs) on the grating were derived from the angle-resolved CL spectra, and patterns of SPP standing waves at the plasmonic band edge were directly observed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Phys. Rev. 106, 874-881 (1957).
    [CrossRef]
  2. S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. M. L. Brongsma and P. G. Kik ed., "Surface Plasmon Nanophotonics, Springer Series in Optical Sciences," Vol. 131 (2007).
  4. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersm, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
    [CrossRef]
  5. W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature(London),  424, 824-830 (2003).
    [CrossRef]
  6. A. Polman, "Plasmonics Applied," Science,  322, 868-869 (2008).
    [CrossRef] [PubMed]
  7. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61(5), 44-50 (2008).
    [CrossRef]
  8. M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433-115443 (2003).
    [CrossRef]
  9. D. Heitmann, "Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces," J. Phys. C 10397-405 (1977).
    [CrossRef]
  10. M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
    [CrossRef] [PubMed]
  11. M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, "Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution," Opt. Express 15, 11313-11320 (2007).
    [CrossRef] [PubMed]
  12. J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
    [CrossRef]
  13. N. Yamamoto, M. Nakano, and T. Suzuki, "Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams," Surf. Interface Anal. 38, 1725-1730 (2006).
    [CrossRef]
  14. N. Yamamoto and T. Suzuki, "Conversion of surface plasmon polaritons to light by a surface step," Appl. Phys. Lett. 93, 093114 (2008).
    [CrossRef]
  15. N. Yamamoto, H. Sugiyama, and A. Toda, "Cherenkov and transition radiation from thin plate crystals detected in the transmission electron microscope," Proc. Roy. Soc. London A 452, 2279-2301 (1996).
    [CrossRef]
  16. W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 (1996).
    [CrossRef]
  17. F. J. García de Abajo and M. Kociak, "Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy," Phys. Rev. Lett. 100, 106804 (2008).
    [CrossRef]
  18. M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
    [CrossRef]

2009 (1)

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
[CrossRef]

2008 (4)

F. J. García de Abajo and M. Kociak, "Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy," Phys. Rev. Lett. 100, 106804 (2008).
[CrossRef]

N. Yamamoto and T. Suzuki, "Conversion of surface plasmon polaritons to light by a surface step," Appl. Phys. Lett. 93, 093114 (2008).
[CrossRef]

A. Polman, "Plasmonics Applied," Science,  322, 868-869 (2008).
[CrossRef] [PubMed]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61(5), 44-50 (2008).
[CrossRef]

2007 (1)

2006 (4)

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

N. Yamamoto, M. Nakano, and T. Suzuki, "Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams," Surf. Interface Anal. 38, 1725-1730 (2006).
[CrossRef]

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersm, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
[CrossRef]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

2003 (2)

W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature(London),  424, 824-830 (2003).
[CrossRef]

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433-115443 (2003).
[CrossRef]

1996 (2)

N. Yamamoto, H. Sugiyama, and A. Toda, "Cherenkov and transition radiation from thin plate crystals detected in the transmission electron microscope," Proc. Roy. Soc. London A 452, 2279-2301 (1996).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 (1996).
[CrossRef]

1977 (1)

D. Heitmann, "Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces," J. Phys. C 10397-405 (1977).
[CrossRef]

1957 (1)

R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Phys. Rev. 106, 874-881 (1957).
[CrossRef]

Atwater, H. A.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
[CrossRef]

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Barnes, W. L.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 (1996).
[CrossRef]

Barnes, W.L.

W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature(London),  424, 824-830 (2003).
[CrossRef]

Bashevoy, M. V.

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, "Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution," Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Beversluis, M. R.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433-115443 (2003).
[CrossRef]

Bouhelier, A.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433-115443 (2003).
[CrossRef]

Bozhevolnyi, S. I.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61(5), 44-50 (2008).
[CrossRef]

Brongersm, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersm, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
[CrossRef]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersm, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
[CrossRef]

Chen, Y.

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, "Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution," Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Dereux, A.

W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature(London),  424, 824-830 (2003).
[CrossRef]

Ebbesen, T. W.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61(5), 44-50 (2008).
[CrossRef]

Ebbesen, T.W.

W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature(London),  424, 824-830 (2003).
[CrossRef]

García de Abajo, F. J.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
[CrossRef]

F. J. García de Abajo and M. Kociak, "Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy," Phys. Rev. Lett. 100, 106804 (2008).
[CrossRef]

Genet, C.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61(5), 44-50 (2008).
[CrossRef]

Heitmann, D.

D. Heitmann, "Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces," J. Phys. C 10397-405 (1977).
[CrossRef]

Jonsson, F.

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, "Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution," Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Kitson, S. C.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 (1996).
[CrossRef]

Kociak, M.

F. J. García de Abajo and M. Kociak, "Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy," Phys. Rev. Lett. 100, 106804 (2008).
[CrossRef]

Koenderink, A. F.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
[CrossRef]

Krasavin, A. V.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Kuttge, M.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
[CrossRef]

Lezec, H. J.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
[CrossRef]

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

MacDonald, K. F.

Nakano, M.

N. Yamamoto, M. Nakano, and T. Suzuki, "Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams," Surf. Interface Anal. 38, 1725-1730 (2006).
[CrossRef]

Novotny, L.

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433-115443 (2003).
[CrossRef]

Polman, A.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
[CrossRef]

A. Polman, "Plasmonics Applied," Science,  322, 868-869 (2008).
[CrossRef] [PubMed]

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Preist, T. W.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 (1996).
[CrossRef]

Ritchie, R. H.

R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Phys. Rev. 106, 874-881 (1957).
[CrossRef]

Ross, C. E.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Sambles, J. R.

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 (1996).
[CrossRef]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersm, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
[CrossRef]

Stockman, M. I.

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Sugiyama, H.

N. Yamamoto, H. Sugiyama, and A. Toda, "Cherenkov and transition radiation from thin plate crystals detected in the transmission electron microscope," Proc. Roy. Soc. London A 452, 2279-2301 (1996).
[CrossRef]

Suzuki, T.

N. Yamamoto and T. Suzuki, "Conversion of surface plasmon polaritons to light by a surface step," Appl. Phys. Lett. 93, 093114 (2008).
[CrossRef]

N. Yamamoto, M. Nakano, and T. Suzuki, "Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams," Surf. Interface Anal. 38, 1725-1730 (2006).
[CrossRef]

Toda, A.

N. Yamamoto, H. Sugiyama, and A. Toda, "Cherenkov and transition radiation from thin plate crystals detected in the transmission electron microscope," Proc. Roy. Soc. London A 452, 2279-2301 (1996).
[CrossRef]

van Wijngaarden, J. T.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Verhagen, E.

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

Vesseur, E. J. R.

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
[CrossRef]

Yamamoto, N.

N. Yamamoto and T. Suzuki, "Conversion of surface plasmon polaritons to light by a surface step," Appl. Phys. Lett. 93, 093114 (2008).
[CrossRef]

N. Yamamoto, M. Nakano, and T. Suzuki, "Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams," Surf. Interface Anal. 38, 1725-1730 (2006).
[CrossRef]

N. Yamamoto, H. Sugiyama, and A. Toda, "Cherenkov and transition radiation from thin plate crystals detected in the transmission electron microscope," Proc. Roy. Soc. London A 452, 2279-2301 (1996).
[CrossRef]

Zheludev, N. I.

M. V. Bashevoy, F. Jonsson, K. F. MacDonald, Y. Chen, and N. I. Zheludev, "Hyperspectral imaging of plasmonic nanostructures with nanoscale resolution," Opt. Express 15, 11313-11320 (2007).
[CrossRef] [PubMed]

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersm, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
[CrossRef]

Appl. Phys. Lett. (2)

J. T. van Wijngaarden, E. Verhagen, A. Polman, C. E. Ross, H. J. Lezec, and H. A. Atwater, "Direct imaging of propagation and damping of near-resonance surface plasmon polaritons using cathodoluminescence spectroscopy," Appl. Phys. Lett. 88, 221111 (2006).
[CrossRef]

N. Yamamoto and T. Suzuki, "Conversion of surface plasmon polaritons to light by a surface step," Appl. Phys. Lett. 93, 093114 (2008).
[CrossRef]

J. Phys. C (1)

D. Heitmann, "Radiative decay of surface plasmons excited by fast electrons on periodically modulated silver surfaces," J. Phys. C 10397-405 (1977).
[CrossRef]

Materials Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersm, "Plasmonics: the next chip-scale technology," Materials Today 9, 20-27 (2006).
[CrossRef]

Nano Lett. (1)

M. V. Bashevoy, F. Jonsson, A. V. Krasavin, N. I. Zheludev, Y. Chen, and M. I. Stockman, "Generation of Traveling Surface Plasmon Waves by Free-Electron Impact," Nano Lett. 6, 1113-1115 (2006).
[CrossRef] [PubMed]

Nature(London) (1)

W.L. Barnes, A. Dereux, and T.W. Ebbesen, "Surface plasmon subwavelength optics," Nature(London),  424, 824-830 (2003).
[CrossRef]

Opt. Express (1)

Phys. Rev. (1)

R. H. Ritchie, "Plasma Losses by Fast Electrons in Thin Films," Phys. Rev. 106, 874-881 (1957).
[CrossRef]

Phys. Rev. B (3)

M. R. Beversluis, A. Bouhelier, and L. Novotny, "Continuum generation from single gold nanostructures through near-field mediated intraband transitions," Phys. Rev. B 68, 115433-115443 (2003).
[CrossRef]

W. L. Barnes, T. W. Preist, S. C. Kitson, and J. R. Sambles, "Physical origin of photonic energy gaps in the propagation of surface plasmons on gratings," Phys. Rev. B 54, 6227 (1996).
[CrossRef]

M. Kuttge, E. J. R. Vesseur, A. F. Koenderink, H. J. Lezec, H. A. Atwater, F. J. García de Abajo, and A. Polman, "Local density of states, spectrum, and far-field interference of surface plasmon polaritons probed by cathodoluminescence," Phys. Rev. B 79, 113405 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

F. J. García de Abajo and M. Kociak, "Probing the Photonic Local Density of States with Electron Energy Loss Spectroscopy," Phys. Rev. Lett. 100, 106804 (2008).
[CrossRef]

Phys. Today (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, "Surface-plasmon circuitry," Phys. Today 61(5), 44-50 (2008).
[CrossRef]

Proc. Roy. Soc. London A (1)

N. Yamamoto, H. Sugiyama, and A. Toda, "Cherenkov and transition radiation from thin plate crystals detected in the transmission electron microscope," Proc. Roy. Soc. London A 452, 2279-2301 (1996).
[CrossRef]

Science (1)

A. Polman, "Plasmonics Applied," Science,  322, 868-869 (2008).
[CrossRef] [PubMed]

Surf. Interface Anal. (1)

N. Yamamoto, M. Nakano, and T. Suzuki, "Light emission by surface plasmons on nanostructures of metal surfaces induced by high-energy electron beams," Surf. Interface Anal. 38, 1725-1730 (2006).
[CrossRef]

Other (2)

S. A. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).

M. L. Brongsma and P. G. Kik ed., "Surface Plasmon Nanophotonics, Springer Series in Optical Sciences," Vol. 131 (2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) A schematic drawing of a grating with a rectangular cross section. The period is 800 nm, terrace width is 320 nm and height is 50 nm. (b) Arrangement of a parabolic mirror and sample for an angle-resolved measurement.

Fig. 2.
Fig. 2.

(a) The arrangement for the angle-resolved measurements with the grating direction (the x direction) parallel to the parabolic axis of the mirror. (b, c) ARS patterns taken with the p- and s-polarized light, respectively, in the (a) arrangement. (d) The arrangement with a grating direction perpendicular to the parabolic axis. (e, f) ARS patterns taken with the p- and s-polarized light, respectively, arranged as in (d).

Fig. 3.
Fig. 3.

(a, b) Dispersion patterns transformed from Fig. 2(b) and 2(f), respectively. (c, d) The relation between the wave vectors of an SPP and a photon in the emission processes of (a) and (b), respectively. (e) The dispersion plane of an SPP in the 1-dimensional periodic structure. A set of cones are drawn so as that the dispersion cone of the SPP on a flat silver surface is shifted by G (the empty lattice approximation). Solid lines in (a) and (b) are the dispersion curves along the a * and b * directions in (e) for a period of 800 nm.

Fig. 4.
Fig. 4.

(a) The ARS pattern for Fig. 2(b). (b) A spectrum image taken with a scanning electron beam across the grating. (c) Illustration of charge distribution and the electric field of the two SPP standing waves.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k p k = G
E spp = E ph
k x = k sin θ = E ph h ¯ c sin θ
Ψ ± ( r ) = C 1 exp { i ( G 1 + k y ) · r } ± C 1 exp { i ( G 1 + k y ) · r }
= [ C 1 exp ( i π x ) ± C 1 exp ( i π x ) ] exp ik y y

Metrics