Abstract

The localized surface plasmon resonances in a metallic nanorod are determined using the “electrostatic approximation” and by a finite-difference time-domain numerical solution of Maxwell’s equations. The difference between the two methods is related to the effects of re-radiation, or retardation, which is not included in the electrostatic formulation. It is shown that high-order modes in a metallic nanorod can be modeled by both methods, even beyond the point where the electrostatic method is supposed to fail. This suggests that the simple analytical expressions derived from the electrostatic approximation are valid for describing the large range of resonant modes associated with metallic nanoparticles, including dark modes.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
    [CrossRef]
  2. A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, London, 1995).
  3. E. Noponen and J. Turunen, “Eigenmode method for electromagnetic synthesis of diffractive elements with three-dimensional profiles,” J. Opt. Soc. Am. A 11(9), 2494–2502 (1994).
    [CrossRef]
  4. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995).
    [CrossRef]
  5. M. G. Moharam, D. A. Pommet, E. B. Grann, and T. K. Gaylord, “Stable implementation of the rigorous coupled-wave analysis for surface relief gratings: enhanced transmission matrix approach,” J. Opt. Soc. Am. A 12(5), 1077–1086 (1995).
    [CrossRef]
  6. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11(4), 1491–1499 (1994).
    [CrossRef]
  7. F. J. García de Abajo and A. Howie, “Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics,” Phys. Rev. Lett. 80(23), 5180–5183 (1998).
    [CrossRef]
  8. F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” A., Phys. Rev. B 65(11), 115418 (2002).
    [CrossRef]
  9. I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
    [CrossRef]
  10. T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
    [CrossRef]
  11. T. J. Davis, K. C. Vernon, and D. E. Gómez, “A plasmonic “ac Wheatstone bridge” circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106(4), 043502 (2009).
    [CrossRef]
  12. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
    [CrossRef] [PubMed]
  13. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
    [CrossRef] [PubMed]
  14. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
    [CrossRef] [PubMed]
  15. T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems: applications to dark modes in nanoparticle pairs and triplets,” Proc. SPIE 7394, 739423 (2009).
    [CrossRef]
  16. P. W. Barber, R. K. Chang, and H. Massoudi, “Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids,” Phys. Rev. B 27(12), 7251–7261 (1983).
    [CrossRef]
  17. V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
    [CrossRef] [PubMed]
  18. W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
    [CrossRef]
  19. A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
    [CrossRef]
  20. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.
  21. I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett. 98(14), 147401 (2007).
    [CrossRef] [PubMed]
  22. T. J. Davis, “Modelling and fabrication of tuned circuits for optical meta-materials,” Proc. SPIE 6038, Y380 (2005).

2009

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “A plasmonic “ac Wheatstone bridge” circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106(4), 043502 (2009).
[CrossRef]

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems: applications to dark modes in nanoparticle pairs and triplets,” Proc. SPIE 7394, 739423 (2009).
[CrossRef]

2008

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

2007

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett. 98(14), 147401 (2007).
[CrossRef] [PubMed]

2006

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

2005

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

T. J. Davis, “Modelling and fabrication of tuned circuits for optical meta-materials,” Proc. SPIE 6038, Y380 (2005).

2004

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

2002

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” A., Phys. Rev. B 65(11), 115418 (2002).
[CrossRef]

1998

F. J. García de Abajo and A. Howie, “Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics,” Phys. Rev. Lett. 80(23), 5180–5183 (1998).
[CrossRef]

1995

1994

1983

P. W. Barber, R. K. Chang, and H. Massoudi, “Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids,” Phys. Rev. B 27(12), 7251–7261 (1983).
[CrossRef]

1966

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Barber, P. W.

P. W. Barber, R. K. Chang, and H. Massoudi, “Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids,” Phys. Rev. B 27(12), 7251–7261 (1983).
[CrossRef]

Chang, R. K.

P. W. Barber, R. K. Chang, and H. Massoudi, “Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids,” Phys. Rev. B 27(12), 7251–7261 (1983).
[CrossRef]

Davis, T. J.

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems: applications to dark modes in nanoparticle pairs and triplets,” Proc. SPIE 7394, 739423 (2009).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “A plasmonic “ac Wheatstone bridge” circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106(4), 043502 (2009).
[CrossRef]

T. J. Davis, “Modelling and fabrication of tuned circuits for optical meta-materials,” Proc. SPIE 6038, Y380 (2005).

Draine, B. T.

Flatau, P. J.

Fleischhauer, M.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Ford, G. W.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

Fredkin, D. R.

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

Funston, A. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

García de Abajo, F. J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” A., Phys. Rev. B 65(11), 115418 (2002).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics,” Phys. Rev. Lett. 80(23), 5180–5183 (1998).
[CrossRef]

Gaylord, T. K.

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Giessen, H.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Gómez, D. E.

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “A plasmonic “ac Wheatstone bridge” circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106(4), 043502 (2009).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems: applications to dark modes in nanoparticle pairs and triplets,” Proc. SPIE 7394, 739423 (2009).
[CrossRef]

Grann, E. B.

Hao, F.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Howie, A.

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” A., Phys. Rev. B 65(11), 115418 (2002).
[CrossRef]

F. J. García de Abajo and A. Howie, “Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics,” Phys. Rev. Lett. 80(23), 5180–5183 (1998).
[CrossRef]

Kästel, J.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Koenderink, A. F.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Langguth, L.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Liu, N.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Liz-Marzán, L. M.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Maier, S. A.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Massoudi, H.

P. W. Barber, R. K. Chang, and H. Massoudi, “Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids,” Phys. Rev. B 27(12), 7251–7261 (1983).
[CrossRef]

Mayergoyz, I. D.

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett. 98(14), 147401 (2007).
[CrossRef] [PubMed]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

Miano, G.

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett. 98(14), 147401 (2007).
[CrossRef] [PubMed]

Moharam, M. G.

Moshchalkov, V. V.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Mulvaney, P.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Myroshnychenko, V.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Noponen, E.

Nordlander, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Novo, C.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Pfau, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Polman, A.

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Pommet, D. A.

Rodríguez-Fernández, J.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

Sobhani, H.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Sonnefraud, Y.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Turunen, J.

Van Dorpe, P.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Verellen, N.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Vernon, K. C.

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems: applications to dark modes in nanoparticle pairs and triplets,” Proc. SPIE 7394, 739423 (2009).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “A plasmonic “ac Wheatstone bridge” circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106(4), 043502 (2009).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

Wang, Y.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Weber, W. H.

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

Weiss, T.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Yee, K. S.

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

Zhang, Z.

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett. 98(14), 147401 (2007).
[CrossRef] [PubMed]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

A., Phys. Rev. B

F. J. García de Abajo and A. Howie, “Retarded field calculation of electron energy loss in inhomogeneous dielectrics,” A., Phys. Rev. B 65(11), 115418 (2002).
[CrossRef]

Chem. Soc. Rev.

V. Myroshnychenko, J. Rodríguez-Fernández, I. Pastoriza-Santos, A. M. Funston, C. Novo, P. Mulvaney, L. M. Liz-Marzán, and F. J. García de Abajo, “Modelling the optical response of gold nanoparticles,” Chem. Soc. Rev. 37(9), 1792–1805 (2008).
[CrossRef] [PubMed]

IEEE Trans. Antenn. Propag.

K. S. Yee, “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic Media,” IEEE Trans. Antenn. Propag. 14(3), 302–307 (1966).
[CrossRef]

J. Appl. Phys.

T. J. Davis, K. C. Vernon, and D. E. Gómez, “A plasmonic “ac Wheatstone bridge” circuit for high-sensitivity phase measurement and single-molecule detection,” J. Appl. Phys. 106(4), 043502 (2009).
[CrossRef]

J. Opt. Soc. Am. A

Nano Lett.

N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V. V. Moshchalkov, P. Van Dorpe, P. Nordlander, and S. A. Maier, “Fano resonances in individual coherent plasmonic nanocavities,” Nano Lett. 9(4), 1663–1667 (2009).
[CrossRef] [PubMed]

Nat. Mater.

N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit,” Nat. Mater. 8(9), 758–762 (2009).
[CrossRef] [PubMed]

Phys. Rev. B

P. W. Barber, R. K. Chang, and H. Massoudi, “Electrodynamic calculations of the surface-enhanced electric intensities on large Ag spheroids,” Phys. Rev. B 27(12), 7251–7261 (1983).
[CrossRef]

I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, “Electrostatic (plasmon) resonances in nanoparticles,” Phys. Rev. B 72(15), 155412 (2005).
[CrossRef]

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems using optical coupling between nanoparticles,” Phys. Rev. B 79(15), 155423 (2009).
[CrossRef]

W. H. Weber and G. W. Ford, “Propagation of optical excitations by dipolar interactions in metal nanoparticle chains,” Phys. Rev. B 70(12), 125429 (2004).
[CrossRef]

A. F. Koenderink and A. Polman, “Complex response and polariton-like dispersion splitting in periodic metal nanoparticle chains,” Phys. Rev. B 74(3), 033402 (2006).
[CrossRef]

Phys. Rev. Lett.

I. D. Mayergoyz, Z. Zhang, and G. Miano, “Analysis of dynamics of excitation and dephasing of plasmon resonance modes in nanoparticles,” Phys. Rev. Lett. 98(14), 147401 (2007).
[CrossRef] [PubMed]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101(4), 047401 (2008).
[CrossRef] [PubMed]

F. J. García de Abajo and A. Howie, “Relativistic Electron Energy Loss and Electron-Induced Photon Emission in Inhomogeneous Dielectrics,” Phys. Rev. Lett. 80(23), 5180–5183 (1998).
[CrossRef]

Proc. SPIE

T. J. Davis, K. C. Vernon, and D. E. Gómez, “Designing plasmonic systems: applications to dark modes in nanoparticle pairs and triplets,” Proc. SPIE 7394, 739423 (2009).
[CrossRef]

T. J. Davis, “Modelling and fabrication of tuned circuits for optical meta-materials,” Proc. SPIE 6038, Y380 (2005).

Other

A. Taflove, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, London, 1995).

C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The first ten localized surface plasmon modes of a nanorod. The color represents the relative strength of the surface-dipole distribution with blue positive and red negative. The surface-charge distributions are similar.

Fig. 2
Fig. 2

The excitation spectra of 90 nm long and 230 nm long nanorods calculated using the FDTD method. The spectra were obtained from samples of the three electric field components at the end of the nanorod. Included on the spectra are the locations of the modes as calculated using the electrostatic approximation.

Fig. 3
Fig. 3

The fractional error in the position of the resonance based on the difference between the FDTD calculation and the electrostatic approximation for four different length nanorods. Also shown is the location of each of the modes as determined by the electrostatic approximation and the validity condition for each rod.

Fig. 4
Fig. 4

The excitation spectra of 90 nm long and 230 nm long nanorods calculated using the FDTD method where the incident field was a plane wave. Many of the modes, notably those that have a zero dipole moment, are not excited in this case.

Tables (1)

Tables Icon

Table 1 Electrostatic Resonances of the Nanorod

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

Re ε ( ω p j ) = ε b ( γ p j + 1 γ p j 1 )
ε b ( k d ) 2 1
a p j = 2 γ p j ε b ( ε ( ω ) ε b ) ε b ( γ p j + 1 ) + ε ( ω ) ( γ p j 1 ) τ p j ( r ) n ^ . E ( r ) d S
ε ( ω ) = 1 ( ω p 2 + Γ 2 ) ω ( ω + i Γ )
Re ε ( ω p j ) ε b ( γ p j + 1 γ p j 1 ) ( 1 + ( γ p j 2 γ p j 2 1 ) ε b A λ 2 2 π I p j )

Metrics