Abstract

We report silicon photonic many-element coupled-resonator optical waveguides (CROWs) using microspiral and double-notch-shaped microdisk resonators. Such microresonators enable gapless inter-cavity coupling via seamlessly jointed sub-micrometer-sized notches. Our experiments reveal CROW transmission spectra using up to 101 gaplessly coupled microdisk resonators. We estimate from the transmission measurements an insertion loss of ~0.11 - ~0.24 dB/disk within the transmission bands. We show high-order filtering performance with maximum 3-dB linewidth of ~2.5 nm and measurement-limited side-mode suppression ratio of ~30 dB. The demonstrated maximum optical delay from a 101-element 0.4-μm-notch CROW is ~70 ps at the transmission band center and ~110 ps at the sideband.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, “Coupled-resonator optical waveguide: a proposal and analysis,” Opt. Lett. 24(11), 711–713 (1999).
    [CrossRef] [PubMed]
  2. B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
    [CrossRef]
  3. F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
    [CrossRef]
  4. S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14765 .
    [CrossRef] [PubMed]
  5. F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11934 .
    [CrossRef] [PubMed]
  6. Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
    [CrossRef]
  7. Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17(4), 2247–2254 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2247 .
    [CrossRef] [PubMed]
  8. J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004).
    [CrossRef]
  9. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Transmission and group delay of microring coupled-resonator optical waveguides,” Opt. Lett. 31(4), 456–458 (2006).
    [CrossRef] [PubMed]
  10. J. K. S. Poon, L. Zhu, G. A. DeRose, and A. Yariv, “Polymer microring coupled-resonator optical waveguides,” J. Lightwave Technol. 24(4), 1843–1849 (2006).
    [CrossRef]
  11. F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
    [CrossRef]
  12. A. Melloni, F. Morichetti, C. Ferrari, and M. Martinelli, “Continuously tunable 1 byte delay in coupled-resonator optical waveguides,” Opt. Lett. 33(20), 2389–2391 (2008).
    [CrossRef] [PubMed]
  13. S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
    [CrossRef]
  14. X. Luo, and A. W. Poon, “50-element cascaded-resonator devices with gapless non-evanescent coupling using double-notch-shaped microdisks on a silicon chip,” IEEE 5th International Conference on Group IV Photonics, Sorrento, Italy, 2008.
  15. X. Luo and A. W. Poon, “Double-notch-shaped microdisk resonator devices with gapless coupling on a silicon chip,” Chin. Opt. Lett. 7, 296–298 (2009).
    [CrossRef]
  16. X. Luo, and A. W. Poon, “101-element cascaded-microdisk resonators on a silicon chip,” in Proc. Conference on Lasers and Electro-Optics 2009 (IEEE and Optical Society of America,2009), Paper CMAA3.
  17. G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
    [CrossRef]
  18. J. Y. Lee, X. Luo, and A. W. Poon, “Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators,” Opt. Express 15(22), 14650–14666 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14650 .
    [CrossRef] [PubMed]
  19. X. Luo, J. Y. Lee, and A. W. Poon, “Coupled spiral-shaped microdisk resonators with asymmetric non-evanescent coupling,” IEEE 4th International Conference on Group IV Photonics, Tokyo, Japan, 2007.
  20. X. Luo and A. W. Poon, “Coupled spiral-shaped microdisk resonators with non-evanescent asymmetric inter-cavity coupling,” Opt. Express 15(25), 17313–17322 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17313 .
    [CrossRef] [PubMed]
  21. A. W. Poon, X. Luo, H. Chen, G. E. Fernandes, and R. K. Chang, “Microspiral resonators for integrated photonics,” Opt. Photon. News 19(10), 36–53 (2008).
    [CrossRef]
  22. A. W. Poon, X. Luo, L. Zhou, C. Li, J. Y. Lee, F. Xu, H. Chen, and N. K. Hon, “Microresonator-based devices on a silicon chip: novel shaped cavities and resonance coherent interference,” in Matsko, A. (Ed.) Practical applications of microresonators in optics and photonics (CRC Press, Taylor and Francis Group, Boca Raton, 2009).
  23. X. Luo, C. Li, and A. W. Poon, “Double-notch-shaped microdisk resonator-based devices in silicon-on-insulator,” in Proc. Conference on Lasers and Electro-Optics 2008 (IEEE and Optical Society of America,2008), paper CTuNN7.
  24. G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, “High-Q-preserving coupling between a spiral and a semicircle micro-cavity,” Opt. Lett. 32(9), 1093–1095 (2007).
    [CrossRef] [PubMed]
  25. G. E. Fernandes, L. Guyot, G. D. Chern, M. Kneissl, N. M. Johnson, Q. Song, L. Xu, and R. K. Chang, “Wavelength and intensity switching in directly coupled semiconductor microdisk lasers,” Opt. Lett. 33(6), 605–607 (2008).
    [CrossRef] [PubMed]
  26. K. Ohtaka, “Theory I: Basic aspects of photonic bands,” In K. Inoue, and K. Ohtaka, (Eds) Photonics crystals: physics, fabrication, and applications (Spinger-Verlag, Berlin; Hong Kong 2004).
  27. J. W. Goodman, Introduction to Fourier Optics, Ch. 10, 3rd edition (ROBERTS & COMPANY, Englewood, Colorado, 2005).
  28. C. Ferrari, F. Morichetti, and A. Melloni, “Disorder in coupling-resonator optical waveguides,” J. Opt. Soc. Am. B 26(4), 858–866 (2009).
    [CrossRef]
  29. S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32(3), 289–291 (2007).
    [CrossRef] [PubMed]
  30. C. K. Madsen, and J. H. Zhao, Optical filter design and analysis: a signal processing approach. 1st edition, John Wiley & Sons, Inc. (1999).
  31. A. Melloni, F. Morichetti, and M. Martinelli, “Polarization conversion in ring resonator phase shifters,” Opt. Lett. 29(23), 2785–2787 (2004).
    [CrossRef] [PubMed]
  32. F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17273 .
    [CrossRef] [PubMed]
  33. F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8395 .
    [CrossRef] [PubMed]
  34. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-15-6851 .
    [CrossRef] [PubMed]
  35. C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5069 .
    [CrossRef] [PubMed]

2009

2008

2007

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32(3), 289–291 (2007).
[CrossRef] [PubMed]

G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, “High-Q-preserving coupling between a spiral and a semicircle micro-cavity,” Opt. Lett. 32(9), 1093–1095 (2007).
[CrossRef] [PubMed]

C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5069 .
[CrossRef] [PubMed]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11934 .
[CrossRef] [PubMed]

J. Y. Lee, X. Luo, and A. W. Poon, “Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators,” Opt. Express 15(22), 14650–14666 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14650 .
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14765 .
[CrossRef] [PubMed]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17273 .
[CrossRef] [PubMed]

X. Luo and A. W. Poon, “Coupled spiral-shaped microdisk resonators with non-evanescent asymmetric inter-cavity coupling,” Opt. Express 15(25), 17313–17322 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17313 .
[CrossRef] [PubMed]

2006

2004

J. K. S. Poon, J. Scheuer, Y. Xu, and A. Yariv, “Designing coupled-resonator optical waveguide delay lines,” J. Opt. Soc. Am. B 21(9), 1665–1673 (2004).
[CrossRef]

A. Melloni, F. Morichetti, and M. Martinelli, “Polarization conversion in ring resonator phase shifters,” Opt. Lett. 29(23), 2785–2787 (2004).
[CrossRef] [PubMed]

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

2003

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[CrossRef]

1999

Absil, P. P.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Adibi, A.

Bandaru, P. R.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

Breda, A.

Canciamilla, A.

Chang, R. K.

G. E. Fernandes, L. Guyot, G. D. Chern, M. Kneissl, N. M. Johnson, Q. Song, L. Xu, and R. K. Chang, “Wavelength and intensity switching in directly coupled semiconductor microdisk lasers,” Opt. Lett. 33(6), 605–607 (2008).
[CrossRef] [PubMed]

A. W. Poon, X. Luo, H. Chen, G. E. Fernandes, and R. K. Chang, “Microspiral resonators for integrated photonics,” Opt. Photon. News 19(10), 36–53 (2008).
[CrossRef]

G. D. Chern, G. E. Fernandes, R. K. Chang, Q. Song, L. Xu, M. Kneissl, and N. M. Johnson, “High-Q-preserving coupling between a spiral and a semicircle micro-cavity,” Opt. Lett. 32(9), 1093–1095 (2007).
[CrossRef] [PubMed]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[CrossRef]

Chen, H.

A. W. Poon, X. Luo, H. Chen, G. E. Fernandes, and R. K. Chang, “Microspiral resonators for integrated photonics,” Opt. Photon. News 19(10), 36–53 (2008).
[CrossRef]

Chern, G. D.

Chu, S. T.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

DeRose, G. A.

Fernandes, G. E.

Ferrari, C.

Gill, D.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Green, W. M. J.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

Guyot, L.

Hryniewicz, J. V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Johnson, F. G.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Johnson, N. M.

Khan, M. H.

King, O.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Kneissl, M.

Lee, J. Y.

Lee, R. K.

Li, C.

Li, Q.

Little, B. E.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Luo, X.

Martinelli, M.

Melloni, A.

Mookherjea, S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

S. Mookherjea and A. Oh, “Effect of disorder on slow light velocity in optical slow-wave structures,” Opt. Lett. 32(3), 289–291 (2007).
[CrossRef] [PubMed]

Morichetti, F.

O'Boyle, M.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Oh, A.

Park, J. S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

Poon, A. W.

Poon, J. K. S.

Qi, M.

Rooks, M.

Scherer, A.

Scheuer, J.

Seiferth, F.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Sekaric, L.

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11934 .
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Shen, H.

Soltani, M.

Song, Q.

Stone, A. D.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[CrossRef]

Trakalo, M.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Tureci, H. E.

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[CrossRef]

Van, V.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

Vlasov, Y.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11934 .
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Xia, F.

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11934 .
[CrossRef] [PubMed]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

Xiao, S.

Xu, L.

Xu, Y.

Yang, S.

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

Yariv, A.

Yegnanarayanan, S.

Zhou, L.

Zhu, L.

Appl. Phys. Lett.

F. Xia, L. Sekaric, M. O'Boyle, and Y. Vlasov, “Coupled resonator optical waveguides based on silicon-on-insulator photonic wires,” Appl. Phys. Lett. 89(4), 041122 (2006).
[CrossRef]

G. D. Chern, H. E. Tureci, A. D. Stone, R. K. Chang, M. Kneissl, and N. M. Johnson, “Unidirectional lasing from InGaN multiple-quantum-well spiral-shaped micropillars,” Appl. Phys. Lett. 83(9), 1710–1712 (2003).
[CrossRef]

Chin. Opt. Lett.

IEEE Photon. Technol. Lett.

B. E. Little, S. T. Chu, P. P. Absil, J. V. Hryniewicz, F. G. Johnson, F. Seiferth, D. Gill, V. Van, O. King, and M. Trakalo, “Very high-order microring resonator filters for WDM applications,” IEEE Photon. Technol. Lett. 16(10), 2263–2265 (2004).
[CrossRef]

J. Lightwave Technol.

J. Opt. Soc. Am. B

Nat. Photonics

Y. Vlasov, W. M. J. Green, and F. Xia, “High-throughput silicon nanophotonic wavelength-insensitive switch for on-chip optical networks,” Nat. Photonics 2(4), 242–246 (2008).
[CrossRef]

F. Xia, L. Sekaric, and Y. Vlasov, “Ultracompact optical buffers on a silicon chip,” Nat. Photonics 1(1), 65–71 (2007).
[CrossRef]

S. Mookherjea, J. S. Park, S. Yang, and P. R. Bandaru, “Localization in silicon nanophotonic slow-light waveguides,” Nat. Photonics 2(2), 90–93 (2008).
[CrossRef]

Opt. Express

L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-15-6851 .
[CrossRef] [PubMed]

F. Morichetti, A. Melloni, C. Ferrari, and M. Martinelli, “Error-free continuously-tunable delay at 10 Gbit/s in a reconfigurable on-chip delay-line,” Opt. Express 16(12), 8395–8405 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=oe-16-12-8395 .
[CrossRef] [PubMed]

C. Li, L. Zhou, and A. W. Poon, “Silicon microring carrier-injection-based modulators/switches with tunable extinction ratios and OR-logic switching by using waveguide cross-coupling,” Opt. Express 15(8), 5069–5076 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-8-5069 .
[CrossRef] [PubMed]

F. Xia, M. Rooks, L. Sekaric, and Y. Vlasov, “Ultra-compact high order ring resonator filters using submicron silicon photonic wires for on-chip optical interconnects,” Opt. Express 15(19), 11934–11941 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-19-11934 .
[CrossRef] [PubMed]

J. Y. Lee, X. Luo, and A. W. Poon, “Reciprocal transmissions and asymmetric modal distributions in waveguide-coupled spiral-shaped microdisk resonators,” Opt. Express 15(22), 14650–14666 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14650 .
[CrossRef] [PubMed]

S. Xiao, M. H. Khan, H. Shen, and M. Qi, “A highly compact third-order silicon microring add-drop filter with a very large free spectral range, a flat passband and a low delay dispersion,” Opt. Express 15(22), 14765–14771 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-22-14765 .
[CrossRef] [PubMed]

F. Morichetti, A. Melloni, A. Breda, A. Canciamilla, C. Ferrari, and M. Martinelli, “A reconfigurable architecture for continuously variable optical slow-wave delay lines,” Opt. Express 15(25), 17273–17282 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17273 .
[CrossRef] [PubMed]

X. Luo and A. W. Poon, “Coupled spiral-shaped microdisk resonators with non-evanescent asymmetric inter-cavity coupling,” Opt. Express 15(25), 17313–17322 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-25-17313 .
[CrossRef] [PubMed]

Q. Li, M. Soltani, S. Yegnanarayanan, and A. Adibi, “Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform,” Opt. Express 17(4), 2247–2254 (2009), http://www.opticsinfobase.org/abstract.cfm?URI=oe-17-4-2247 .
[CrossRef] [PubMed]

Opt. Lett.

Opt. Photon. News

A. W. Poon, X. Luo, H. Chen, G. E. Fernandes, and R. K. Chang, “Microspiral resonators for integrated photonics,” Opt. Photon. News 19(10), 36–53 (2008).
[CrossRef]

Other

A. W. Poon, X. Luo, L. Zhou, C. Li, J. Y. Lee, F. Xu, H. Chen, and N. K. Hon, “Microresonator-based devices on a silicon chip: novel shaped cavities and resonance coherent interference,” in Matsko, A. (Ed.) Practical applications of microresonators in optics and photonics (CRC Press, Taylor and Francis Group, Boca Raton, 2009).

X. Luo, C. Li, and A. W. Poon, “Double-notch-shaped microdisk resonator-based devices in silicon-on-insulator,” in Proc. Conference on Lasers and Electro-Optics 2008 (IEEE and Optical Society of America,2008), paper CTuNN7.

C. K. Madsen, and J. H. Zhao, Optical filter design and analysis: a signal processing approach. 1st edition, John Wiley & Sons, Inc. (1999).

K. Ohtaka, “Theory I: Basic aspects of photonic bands,” In K. Inoue, and K. Ohtaka, (Eds) Photonics crystals: physics, fabrication, and applications (Spinger-Verlag, Berlin; Hong Kong 2004).

J. W. Goodman, Introduction to Fourier Optics, Ch. 10, 3rd edition (ROBERTS & COMPANY, Englewood, Colorado, 2005).

X. Luo, and A. W. Poon, “50-element cascaded-resonator devices with gapless non-evanescent coupling using double-notch-shaped microdisks on a silicon chip,” IEEE 5th International Conference on Group IV Photonics, Sorrento, Italy, 2008.

X. Luo, and A. W. Poon, “101-element cascaded-microdisk resonators on a silicon chip,” in Proc. Conference on Lasers and Electro-Optics 2009 (IEEE and Optical Society of America,2009), Paper CMAA3.

X. Luo, J. Y. Lee, and A. W. Poon, “Coupled spiral-shaped microdisk resonators with asymmetric non-evanescent coupling,” IEEE 4th International Conference on Group IV Photonics, Tokyo, Japan, 2007.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematics of many-element coupled-resonator optical waveguides (CROWs) using gapless-coupled microdisk resonators. (a), Many-element D-only CROWs using double-notch-shaped microdisk resonators with only throughput transmission. (b), Many-element S-D CROWs using microspiral and double-notch-shaped microdisk resonators with both throughput- and drop-port transmissions. D: double-notch-shaped microdisk resonator; S: microspiral resonator; r1 , r2 , r0 , r(ϕ): disk radii; ϕ: azimuthal angle; w: notch width; Λ: CROW period.

Fig. 2
Fig. 2

(a) Schematic of the direct and indirect gapless couplings. (b) FDTD-simulated transmission and coupling coefficients for direct and indirect gapless coupling as functions of the notch width. Open squares: κd , open circles: κid , solid squares: td , solid circles: tid , solid stars: |t|2+|κ|2.

Fig. 3
Fig. 3

Fabricated many-element CROWs in a SiN-on-silica substrate. Optical micrographs of many-element (a) D-only and (b) S-D CROWs. (c)-(f) Scanning electron micrographs (SEMs) of the input-coupling, the inter-cavity coupling and the output-coupling regions of a 101-element S-D CROW. (g)-(i) Sampled notch width distributions of three 101-element S-D CROWs from three different chips on a 4” silicon wafer.

Fig. 4
Fig. 4

Measured TM-polarized transmission spectra. (a), (b) Throughput-port transmissions of the 41- and 101-element D-only CROWs with w = 0.8 μm. (c)-(f) Throughput- and drop-port transmissions of the 41- and 101-element S-D CROWs with w = 0.8 μm. (g)-(j) Throughput- and drop-port transmissions of the 41- and 101-element S-D CROWs with w = 0.4 μm. SMSR: side-mode suppression ratio.

Fig. 5
Fig. 5

(a)-(c) Transmission bands A, B and C evolution with the disk number N. (d)-(f) Transmission band peak intensity, side-mode suppression ratio and linewidth for transmission bands A, B and C, as functions of disk number N. Red squares: transmission band A; blue circles: transmission band B; purple triangles: transmission band C. Lines in (d): linear fittings.

Fig. 6
Fig. 6

Measured 10-Gbit/s signal transmissions from many-element CROWs. The measured transmission intensity is normalized to each reference.

Fig. 7
Fig. 7

(a)-(b) Measured optical time delays from the drop-port transmissions of 41- and 101-element S-D CROWs within the transmission bands. (c) The transmitted 10-Gb/s PRBS (210-1) data stream showing time delay from 41- and 101-element CROWs. (d) Measured optical time delay as a function of cascaded microdisk number N. The optical delays linearly increase with the disk number, N. The lines are for visualization.

Metrics