Abstract

We study both experimentally and theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in standard birefringent optical fibers. The ability to produce a range of two-photon spectral states, from highly correlated (entangled) to completely factorable, by means of cross-polarized birefringent phase matching, is explored. A simple model is developed to predict the spectral state of the photon pair which shows how this can be adjusted by choosing the appropriate pump bandwidth, fiber length and birefringence. Spontaneous Raman scattering is modeled to determine the tradeoff between SFWM and background Raman noise, and the predicted results are shown to agree with experimental data.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Harris, “Chirp and Compress: Toward Single-Cycle Biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
    [CrossRef] [PubMed]
  2. K. A. O’Donnell and A. B. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32, 817–819 (2007).
    [CrossRef] [PubMed]
  3. M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
    [CrossRef] [PubMed]
  4. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchonization,” Nature 412, 417–419 (2001).
    [CrossRef] [PubMed]
  5. V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating Entangled Two-Photon States with Coincident Frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
    [CrossRef] [PubMed]
  6. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett. 94, 083601 (2005).
    [CrossRef] [PubMed]
  7. J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
    [CrossRef] [PubMed]
  8. A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
    [CrossRef] [PubMed]
  9. R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A,  62, 053810 (2000).
    [CrossRef]
  10. M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography,” Phys. Rev. Lett. 91, 083601 (2003).
    [CrossRef] [PubMed]
  11. J. D. Franson, “Bell Inequality for Position and Time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
    [CrossRef] [PubMed]
  12. Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Einstein-Podolsky-Rosen state for space-time variables in a two-photon interference experiment,” Phys. Rev. A 47, 1288–1293 (1992).
    [CrossRef]
  13. P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
    [CrossRef] [PubMed]
  14. W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
    [CrossRef]
  15. C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
    [CrossRef] [PubMed]
  16. W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
    [CrossRef]
  17. A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping theWaveform of Entangled Photons,” Phys. Rev. Lett. 99, 243601 (2007).
    [CrossRef]
  18. K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
    [CrossRef]
  19. K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides”, Opt. Lett.,  26, 1367–1369 (2001)
    [CrossRef]
  20. A. B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Conditional preparation of single photons for scalable quantum-optical networking,” Phys. Rev. Lett.,  93, 093601 (2004).
    [CrossRef] [PubMed]
  21. S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
    [CrossRef]
  22. J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
    [CrossRef]
  23. J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 24, 3368–3370 (2005).
    [CrossRef]
  24. J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777 (2005).
    [CrossRef] [PubMed]
  25. J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
    [CrossRef] [PubMed]
  26. J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
    [CrossRef] [PubMed]
  27. X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
    [CrossRef] [PubMed]
  28. J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
    [CrossRef]
  29. A. T. Nguyen, K. P. Huy, E. Brainis, P. Mergo, J. Wojcik, T. Nasilowski, J. V. Erps, H. Thienpont, and S. Massar, “Enhanced cross phase modulation instability in birefringent photonic crystal fibers in the anomalous dispersion regime,” Opt. Express 14, 8290–8297 (2006).
    [CrossRef] [PubMed]
  30. J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 043836 (2007).
    [CrossRef]
  31. J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
    [CrossRef] [PubMed]
  32. X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33, 593–595 (2008).
    [CrossRef] [PubMed]
  33. E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
    [CrossRef]
  34. O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
    [CrossRef] [PubMed]
  35. A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Wadsworth, and W. J. Rarity, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17, 6156–6165 (2009).
    [CrossRef] [PubMed]
  36. M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrow band fibre sources,” Opt. Express 17, 4670–4676 (2009).
    [CrossRef] [PubMed]
  37. A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O’Brien, “All-optical-fiber polarization-based quantum logic gate,” Phys. Rev. A 79, 030303(R) (2009).
    [CrossRef]
  38. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
    [CrossRef] [PubMed]
  39. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photonics 3, 346–350 (2009).
    [CrossRef]
  40. G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
    [CrossRef]
  41. B. J. Smith, D. M. Kundys, N. Thomas-Peter, P. G. R. Smith, and I. A. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express 17, 13,639-13,645 (2009).
    [CrossRef]
  42. A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s Quantum Factoring Algorithm on a Photonic Chip,” Science 325, 1221 (2009).
    [CrossRef] [PubMed]
  43. L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
    [CrossRef]
  44. A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).
  45. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
    [CrossRef] [PubMed]
  46. J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086–3094 (2004).
    [CrossRef] [PubMed]
  47. J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001).
    [CrossRef]
  48. M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-Fiber Photon-Pair Source for Quantum Communications,” IEEE Photon. Tech. Lett. 14, 983–985(2002).
    [CrossRef]
  49. H. Takesue and K. Inoue, “1.5-m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
    [CrossRef] [PubMed]
  50. C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14, 6936–6941 (2006).
    [CrossRef] [PubMed]
  51. S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
    [CrossRef] [PubMed]
  52. S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17, 10,290-10,297(2009).
    [CrossRef]
  53. J. B. Altepeter, J. Chen, and P. Kumar, “Entangled State Engineering in Single-Mode Fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper QMA4.
    [PubMed]
  54. M. A. Hall, J. B. Altepeter, and P. Kumar, “Generation of O-Band Polarization Entanglement in SMF-28,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ITuE5.
  55. M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express 17, 14,558-14,566 (2009).
    [CrossRef]
  56. R. H. Stolen and J. E. Bjorkholm, “Parametric Amplification and Frequency Conversion in Optical Fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
    [CrossRef]
  57. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, 2006).
  58. P. S. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technology 24, 4729–4749 (2006).
    [CrossRef]
  59. K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
    [CrossRef] [PubMed]
  60. R. H. Stolen, M. A. Bosch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6, 213–215 (1981).
    [CrossRef] [PubMed]
  61. S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).
    [CrossRef] [PubMed]
  62. S. Kasap and P. Capper, eds., Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2006).
  63. C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.
  64. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
    [CrossRef]
  65. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).
    [CrossRef] [PubMed]
  66. Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
    [CrossRef]
  67. J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210–1219 (2004).
    [CrossRef]
  68. A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).
  69. P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett. 1, 173–179 (1986).
    [CrossRef]
  70. Y.-H. Kim and W. P. Grice, “Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion,” Opt. Lett. 30, 908–910 (2005).
    [CrossRef] [PubMed]
  71. M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000).

2009 (10)

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Wadsworth, and W. J. Rarity, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17, 6156–6165 (2009).
[CrossRef] [PubMed]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrow band fibre sources,” Opt. Express 17, 4670–4676 (2009).
[CrossRef] [PubMed]

A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O’Brien, “All-optical-fiber polarization-based quantum logic gate,” Phys. Rev. A 79, 030303(R) (2009).
[CrossRef]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photonics 3, 346–350 (2009).
[CrossRef]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
[CrossRef]

B. J. Smith, D. M. Kundys, N. Thomas-Peter, P. G. R. Smith, and I. A. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express 17, 13,639-13,645 (2009).
[CrossRef]

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s Quantum Factoring Algorithm on a Photonic Chip,” Science 325, 1221 (2009).
[CrossRef] [PubMed]

S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17, 10,290-10,297(2009).
[CrossRef]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express 17, 14,558-14,566 (2009).
[CrossRef]

2008 (7)

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33, 593–595 (2008).
[CrossRef] [PubMed]

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

2007 (8)

S. E. Harris, “Chirp and Compress: Toward Single-Cycle Biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[CrossRef] [PubMed]

K. A. O’Donnell and A. B. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32, 817–819 (2007).
[CrossRef] [PubMed]

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping theWaveform of Entangled Photons,” Phys. Rev. Lett. 99, 243601 (2007).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 043836 (2007).
[CrossRef]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

2006 (5)

2005 (11)

J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 24, 3368–3370 (2005).
[CrossRef]

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777 (2005).
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[CrossRef]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett. 94, 083601 (2005).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).

H. Takesue and K. Inoue, “1.5-m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[CrossRef] [PubMed]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

Y.-H. Kim and W. P. Grice, “Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion,” Opt. Lett. 30, 908–910 (2005).
[CrossRef] [PubMed]

2004 (3)

J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210–1219 (2004).
[CrossRef]

J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086–3094 (2004).
[CrossRef] [PubMed]

A. B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Conditional preparation of single photons for scalable quantum-optical networking,” Phys. Rev. Lett.,  93, 093601 (2004).
[CrossRef] [PubMed]

2003 (1)

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

2002 (2)

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating Entangled Two-Photon States with Coincident Frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-Fiber Photon-Pair Source for Quantum Communications,” IEEE Photon. Tech. Lett. 14, 983–985(2002).
[CrossRef]

2001 (6)

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001).
[CrossRef]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchonization,” Nature 412, 417–419 (2001).
[CrossRef] [PubMed]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides”, Opt. Lett.,  26, 1367–1369 (2001)
[CrossRef]

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

2000 (2)

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[CrossRef] [PubMed]

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A,  62, 053810 (2000).
[CrossRef]

1998 (1)

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[CrossRef]

1995 (1)

1993 (1)

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[CrossRef] [PubMed]

1992 (3)

Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Einstein-Podolsky-Rosen state for space-time variables in a two-photon interference experiment,” Phys. Rev. A 47, 1288–1293 (1992).
[CrossRef]

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

1989 (1)

J. D. Franson, “Bell Inequality for Position and Time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[CrossRef] [PubMed]

1986 (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

1982 (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric Amplification and Frequency Conversion in Optical Fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
[CrossRef]

1981 (1)

Agrawal, G. P.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).
[CrossRef] [PubMed]

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, 2006).

Albota, M. A.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett. 94, 083601 (2005).
[CrossRef] [PubMed]

Alibart, O.

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[CrossRef] [PubMed]

Altepeter, J. B.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express 17, 14,558-14,566 (2009).
[CrossRef]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Generation of O-Band Polarization Entanglement in SMF-28,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ITuE5.

J. B. Altepeter, J. Chen, and P. Kumar, “Entangled State Engineering in Single-Mode Fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper QMA4.
[PubMed]

Ams, M.

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
[CrossRef]

Aspect, A.

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Baek, B.

S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17, 10,290-10,297(2009).
[CrossRef]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
[CrossRef] [PubMed]

Baldi, P.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

Ball, J. L.

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

Banaszek, K.

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
[CrossRef]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).

A. B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Conditional preparation of single photons for scalable quantum-optical networking,” Phys. Rev. Lett.,  93, 093601 (2004).
[CrossRef] [PubMed]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides”, Opt. Lett.,  26, 1367–1369 (2001)
[CrossRef]

Beck, M.

J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210–1219 (2004).
[CrossRef]

Bergreen, G. S.

J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210–1219 (2004).
[CrossRef]

Bjorkholm, J. E.

R. H. Stolen and J. E. Bjorkholm, “Parametric Amplification and Frequency Conversion in Optical Fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
[CrossRef]

Bosch, M. A.

Brainis, E.

Branning, D.

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A,  62, 053810 (2000).
[CrossRef]

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[CrossRef]

Brecht, B.

C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.

Carrasco, S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

Cemlyn, B.

Ceré, A.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping theWaveform of Entangled Photons,” Phys. Rev. Lett. 99, 243601 (2007).
[CrossRef]

Chen, J.

C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14, 6936–6941 (2006).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[CrossRef] [PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[CrossRef]

J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086–3094 (2004).
[CrossRef] [PubMed]

J. B. Altepeter, J. Chen, and P. Kumar, “Entangled State Engineering in Single-Mode Fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper QMA4.
[PubMed]

Chiao, R. Y.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

Chuang, I. L.

M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000).

Clark, A.

Clark, A. S.

A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O’Brien, “All-optical-fiber polarization-based quantum logic gate,” Phys. Rev. A 79, 030303(R) (2009).
[CrossRef]

Cohen, O.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

Coker, A.

Cryan, M. J.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Cui, L.

Davies, R. E.

J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210–1219 (2004).
[CrossRef]

Dekker, P.

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
[CrossRef]

Donato, V. W.

J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210–1219 (2004).
[CrossRef]

Duligall, J.

Dyer, S. D.

S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17, 10,290-10,297(2009).
[CrossRef]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
[CrossRef] [PubMed]

Eberly, J. H.

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[CrossRef] [PubMed]

Eisaman, M. D.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 043836 (2007).
[CrossRef]

Erdmann, R.

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A,  62, 053810 (2000).
[CrossRef]

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[CrossRef]

Erps, J. V.

Fan, J.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 043836 (2007).
[CrossRef]

J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 24, 3368–3370 (2005).
[CrossRef]

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777 (2005).
[CrossRef] [PubMed]

Fejer, M. M.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

Fiorentino, M.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett. 94, 083601 (2005).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-Fiber Photon-Pair Source for Quantum Communications,” IEEE Photon. Tech. Lett. 14, 983–985(2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
[CrossRef]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001).
[CrossRef]

Franson, J. D.

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef] [PubMed]

J. D. Franson, “Bell Inequality for Position and Time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[CrossRef] [PubMed]

Fulconis, J.

Garay-Palmett, K.

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

Giovannetti, V.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating Entangled Two-Photon States with Coincident Frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[CrossRef] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchonization,” Nature 412, 417–419 (2001).
[CrossRef] [PubMed]

Gisin, N.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

Goldschmidt, E. A.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

Grangier, P.

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Grice, W.

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A,  62, 053810 (2000).
[CrossRef]

Grice, W. P.

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).

Y.-H. Kim and W. P. Grice, “Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion,” Opt. Lett. 30, 908–910 (2005).
[CrossRef] [PubMed]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[CrossRef]

Halder, M.

Hall, M. A.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express 17, 14,558-14,566 (2009).
[CrossRef]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Generation of O-Band Polarization Entanglement in SMF-28,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ITuE5.

Harris, S. E.

S. E. Harris, “Chirp and Compress: Toward Single-Cycle Biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[CrossRef] [PubMed]

Harvey, J. D.

Hum, D. S.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

Huy, K. P.

Inoue, K.

Joly, N. Y.

C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.

Kärtner, F. X.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett. 94, 083601 (2005).
[CrossRef] [PubMed]

Kim, Y.-H.

Kumar, P.

M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express 17, 14,558-14,566 (2009).
[CrossRef]

C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14, 6936–6941 (2006).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[CrossRef] [PubMed]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[CrossRef]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086–3094 (2004).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-Fiber Photon-Pair Source for Quantum Communications,” IEEE Photon. Tech. Lett. 14, 983–985(2002).
[CrossRef]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
[CrossRef]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001).
[CrossRef]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Generation of O-Band Polarization Entanglement in SMF-28,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ITuE5.

J. B. Altepeter, J. Chen, and P. Kumar, “Entangled State Engineering in Single-Mode Fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper QMA4.
[PubMed]

Kundys, D. M.

B. J. Smith, D. M. Kundys, N. Thomas-Peter, P. G. R. Smith, and I. A. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express 17, 13,639-13,645 (2009).
[CrossRef]

Kuzucu, O.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett. 94, 083601 (2005).
[CrossRef] [PubMed]

Kwiat, P. G.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

Law, C. K.

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[CrossRef] [PubMed]

Lee, K. F.

Leonhardt, R.

Levin, T.

Li, X.

Liang, C.

Lin, C.

Lin, Q.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).
[CrossRef] [PubMed]

Lloyd, S.

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchonization,” Nature 412, 417–419 (2001).
[CrossRef] [PubMed]

Lundeen, J. S.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

Maccone, L.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating Entangled Two-Photon States with Coincident Frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[CrossRef] [PubMed]

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchonization,” Nature 412, 417–419 (2001).
[CrossRef] [PubMed]

Marshall, G. D.

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
[CrossRef]

Massar, S.

Matthews, J. C. F.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photonics 3, 346–350 (2009).
[CrossRef]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
[CrossRef]

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s Quantum Factoring Algorithm on a Photonic Chip,” Science 325, 1221 (2009).
[CrossRef] [PubMed]

McGuinness, H. J.

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

McKinstrie, C. J.

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

McMillan, A. R.

Mergo, P.

Micheli, M. D.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

Migdall, A.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 043836 (2007).
[CrossRef]

J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 24, 3368–3370 (2005).
[CrossRef]

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777 (2005).
[CrossRef] [PubMed]

Molina-Terriza, G.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping theWaveform of Entangled Photons,” Phys. Rev. Lett. 99, 243601 (2007).
[CrossRef]

Mosley, P. J.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.

Murdoch, S. G.

Nam, S. W.

S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17, 10,290-10,297(2009).
[CrossRef]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
[CrossRef] [PubMed]

Nasilowski, T.

Nasr, M. B.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

Neel, M. S.

J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210–1219 (2004).
[CrossRef]

Nguyen, A. T.

Nielson, M. A.

M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000).

O’Brien, J. L.

A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O’Brien, “All-optical-fiber polarization-based quantum logic gate,” Phys. Rev. A 79, 030303(R) (2009).
[CrossRef]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photonics 3, 346–350 (2009).
[CrossRef]

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s Quantum Factoring Algorithm on a Photonic Chip,” Science 325, 1221 (2009).
[CrossRef] [PubMed]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

O’Donnell, K. A.

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
[CrossRef]

K. A. O’Donnell and A. B. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32, 817–819 (2007).
[CrossRef] [PubMed]

Ostrowsky, D.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

Ou, Z. Y.

Podlipensky, A.

C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.

Politi, A.

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s Quantum Factoring Algorithm on a Photonic Chip,” Science 325, 1221 (2009).
[CrossRef] [PubMed]

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photonics 3, 346–350 (2009).
[CrossRef]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
[CrossRef]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Polyakov, S. V.

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

Puentes, G.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

Radic, S.

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

Rangel-Rojo, R.

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

Rarity, J. G.

A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O’Brien, “All-optical-fiber polarization-based quantum logic gate,” Phys. Rev. A 79, 030303(R) (2009).
[CrossRef]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrow band fibre sources,” Opt. Express 17, 4670–4676 (2009).
[CrossRef] [PubMed]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[CrossRef] [PubMed]

Rarity, W. J.

Raymer, M. G.

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).

Riedmatten, H. D.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

Roger, G.

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

Rubin, M. H.

Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Einstein-Podolsky-Rosen state for space-time variables in a two-photon interference experiment,” Phys. Rev. A 47, 1288–1293 (1992).
[CrossRef]

Russell, P. S.

P. S. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technology 24, 4729–4749 (2006).
[CrossRef]

C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.

Russell, P. S. J.

Saleh, B. E. A.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

Sergienko, A. V.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Einstein-Podolsky-Rosen state for space-time variables in a two-photon interference experiment,” Phys. Rev. A 47, 1288–1293 (1992).
[CrossRef]

Shapiro, J. H.

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating Entangled Two-Photon States with Coincident Frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[CrossRef] [PubMed]

Sharping, J. E.

Shi, X.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping theWaveform of Entangled Photons,” Phys. Rev. Lett. 99, 243601 (2007).
[CrossRef]

Shih, Y. H.

Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Einstein-Podolsky-Rosen state for space-time variables in a two-photon interference experiment,” Phys. Rev. A 47, 1288–1293 (1992).
[CrossRef]

Silberhorn, C.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.

Silberhorn, Ch.

A. B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Conditional preparation of single photons for scalable quantum-optical networking,” Phys. Rev. Lett.,  93, 093601 (2004).
[CrossRef] [PubMed]

Smith, B. J.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

B. J. Smith, D. M. Kundys, N. Thomas-Peter, P. G. R. Smith, and I. A. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express 17, 13,639-13,645 (2009).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Smith, P. G. R.

B. J. Smith, D. M. Kundys, N. Thomas-Peter, P. G. R. Smith, and I. A. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express 17, 13,639-13,645 (2009).
[CrossRef]

Söller, C.

C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.

Stefanov, A.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photonics 3, 346–350 (2009).
[CrossRef]

Steinberg, A. M.

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

Stevens, M. J.

Stolen, R. H.

R. H. Stolen and J. E. Bjorkholm, “Parametric Amplification and Frequency Conversion in Optical Fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
[CrossRef]

R. H. Stolen, M. A. Bosch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6, 213–215 (1981).
[CrossRef] [PubMed]

Takesue, H.

Tanzilli, S.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

Teich, M. C.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

Thienpont, H.

Thomas-Peter, N.

B. J. Smith, D. M. Kundys, N. Thomas-Peter, P. G. R. Smith, and I. A. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express 17, 13,639-13,645 (2009).
[CrossRef]

Thorn, J. J.

J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210–1219 (2004).
[CrossRef]

Tittel, H.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

Torner, L.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

Torres, J. P.

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping theWaveform of Entangled Photons,” Phys. Rev. Lett. 99, 243601 (2007).
[CrossRef]

U’Ren, A. B.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

K. A. O’Donnell and A. B. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32, 817–819 (2007).
[CrossRef] [PubMed]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
[CrossRef]

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

A. B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Conditional preparation of single photons for scalable quantum-optical networking,” Phys. Rev. Lett.,  93, 093601 (2004).
[CrossRef] [PubMed]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides”, Opt. Lett.,  26, 1367–1369 (2001)
[CrossRef]

Valencia, A.

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping theWaveform of Entangled Photons,” Phys. Rev. Lett. 99, 243601 (2007).
[CrossRef]

Voss, P. L.

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-Fiber Photon-Pair Source for Quantum Communications,” IEEE Photon. Tech. Lett. 14, 983–985(2002).
[CrossRef]

Wadsworth, J. G.

Wadsworth, W. J.

Walmsley, I. A.

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

B. J. Smith, D. M. Kundys, N. Thomas-Peter, P. G. R. Smith, and I. A. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express 17, 13,639-13,645 (2009).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).

A. B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Conditional preparation of single photons for scalable quantum-optical networking,” Phys. Rev. Lett.,  93, 093601 (2004).
[CrossRef] [PubMed]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides”, Opt. Lett.,  26, 1367–1369 (2001)
[CrossRef]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[CrossRef] [PubMed]

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A,  62, 053810 (2000).
[CrossRef]

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[CrossRef]

Wang, L. J.

J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 24, 3368–3370 (2005).
[CrossRef]

Wasylczyk, P.

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Windeler, R. S.

Withford, M. J.

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
[CrossRef]

Wojcik, J.

Wong, F. N. C.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett. 94, 083601 (2005).
[CrossRef] [PubMed]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating Entangled Two-Photon States with Coincident Frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[CrossRef] [PubMed]

Xiong, C.

Yaman, F.

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).
[CrossRef] [PubMed]

Yang, L.

Yu, D.

Yu, S.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Zang, L.

C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.

Zbinden, H.

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

Zhang, L.

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
[CrossRef]

Am. J. Phys. (1)

J. J. Thorn, M. S. Neel, V. W. Donato, G. S. Bergreen, R. E. Davies, and M. Beck, “Observing the quantum behavior of light in an undergraduate laboratory,” Am. J. Phys. 72, 1210–1219 (2004).
[CrossRef]

Electron. Lett. (1)

S. Tanzilli, H. D. Riedmatten, H. Tittel, H. Zbinden, P. Baldi, M. D. Micheli, D. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett. 73, 26 (2001).
[CrossRef]

Europhys. Lett. (1)

P. Grangier, G. Roger, and A. Aspect, “Experimental Evidence for a Photon Anticorrelation Effect on a Beam Splitter: A New Light on Single-Photon Interferences,” Europhys. Lett. 1, 173–179 (1986).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. H. Stolen and J. E. Bjorkholm, “Parametric Amplification and Frequency Conversion in Optical Fibers,” IEEE J. Quantum Electron. 18, 1062–1072 (1982).
[CrossRef]

IEEE Photon. Tech. Lett. (1)

M. Fiorentino, P. L. Voss, J. E. Sharping, and P. Kumar, “All-Fiber Photon-Pair Source for Quantum Communications,” IEEE Photon. Tech. Lett. 14, 983–985(2002).
[CrossRef]

J. Lightwave Technology (1)

P. S. Russell, “Photonic-Crystal Fibers,” J. Lightwave Technology 24, 4729–4749 (2006).
[CrossRef]

J. Mod. Opt. (1)

L. Zhang, A. B. U’Ren, R. Erdmann, K. A. O’Donnell, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Generation of highly entangled photon pairs for continuous variable Bell inequality violation,” J. Mod. Opt. 54, 707 (2007).
[CrossRef]

Laser Physics (1)

A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion,” Laser Physics 15, 146–161 (2005).

Nature (1)

V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum-enhanced positioning and clock synchonization,” Nature 412, 417–419 (2001).
[CrossRef] [PubMed]

Nature Photonics (1)

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nature Photonics 3, 346–350 (2009).
[CrossRef]

New J. Phys. (1)

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys. 10, 093011 (2008).
[CrossRef]

Opt. Express (15)

M. A. Hall, J. B. Altepeter, and P. Kumar, “Drop-in compatible entanglement for optical-fiber networks,” Opt. Express 17, 14,558-14,566 (2009).
[CrossRef]

G. D. Marshall, A. Politi, J. C. F. Matthews, P. Dekker, M. Ams, M. J. Withford, and J. L. O’Brien, “Laser written waveguide photonic quantum circuits,” Opt. Express 17, 12,546-12,554 (2009).
[CrossRef]

B. J. Smith, D. M. Kundys, N. Thomas-Peter, P. G. R. Smith, and I. A. Walmsley, “Phase-controlled integrated photonic quantum circuits,” Opt. Express 17, 13,639-13,645 (2009).
[CrossRef]

J. E. Sharping, J. Chen, X. Li, and P. Kumar, “Quantum-correlated twin photons from microstructure fiber,” Opt. Express 12, 3086–3094 (2004).
[CrossRef] [PubMed]

H. Takesue and K. Inoue, “1.5-m band quantum-correlated photon pair generation in dispersion-shifted fiber: suppression of noise photons by cooling fiber,” Opt. Express 13, 7832–7839 (2005).
[CrossRef] [PubMed]

C. Liang, K. F. Lee, T. Levin, J. Chen, and P. Kumar, “Ultra stable all-fiber telecom-band entangled photon-pair source for turnkey quantum communication applications,” Opt. Express 14, 6936–6941 (2006).
[CrossRef] [PubMed]

S. D. Dyer, M. J. Stevens, B. Baek, and S. W. Nam, “High-efficiency, ultra low-noise all-fiber photon-pair source,” Opt. Express 16, 9966–9977 (2008).
[CrossRef] [PubMed]

S. D. Dyer, B. Baek, and S. W. Nam, “High-brightness, low-noise, all-fiber photon pair source,” Opt. Express 17, 10,290-10,297(2009).
[CrossRef]

K. Garay-Palmett, H. J. McGuinness, O. Cohen, J. S. Lundeen, R. Rangel-Rojo, A. B. U’Ren, M. G. Raymer, C. J. McKinstrie, S. Radic, and I. A. Walmsley, “Photon pair-state preparation with tailored spectral properties by spontaneous four-wave mixing in photonic-crystal fiber,” Opt. Express 15, 14,870–14,886 (2007).
[CrossRef]

J. Fan and A. Migdall, “Generation of cross-polarized photon pairs in a microstructure fiber with frequency-conjugate laser pump pulses,” Opt. Express 13, 5777 (2005).
[CrossRef] [PubMed]

J. G. Rarity, J. Fulconis, J. Duligall, W. J. Wadsworth, and P. S. J. Russell, “Photonic crystal fiber source of correlated photon pairs,” Opt. Express 13, 534–544 (2005).
[CrossRef] [PubMed]

J. Fulconis, O. Alibart, W. J. Wadsworth, P. S. J. Russell, and J. G. Rarity, “High brightness single mode source of correlated photon pairs using a photonic crystal fiber,” Opt. Express 13, 7572–7582 (2005).
[CrossRef] [PubMed]

A. T. Nguyen, K. P. Huy, E. Brainis, P. Mergo, J. Wojcik, T. Nasilowski, J. V. Erps, H. Thienpont, and S. Massar, “Enhanced cross phase modulation instability in birefringent photonic crystal fibers in the anomalous dispersion regime,” Opt. Express 14, 8290–8297 (2006).
[CrossRef] [PubMed]

A. R. McMillan, J. Fulconis, M. Halder, C. Xiong, J. G. Wadsworth, and W. J. Rarity, “Narrowband high-fidelity all-fibre source of heralded single photons at 1570 nm,” Opt. Express 17, 6156–6165 (2009).
[CrossRef] [PubMed]

M. Halder, J. Fulconis, B. Cemlyn, A. Clark, C. Xiong, W. J. Wadsworth, and J. G. Rarity, “Nonclassical 2-photon interference with separate intrinsically narrow band fibre sources,” Opt. Express 17, 4670–4676 (2009).
[CrossRef] [PubMed]

Opt. Lett. (11)

X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett. 33, 593–595 (2008).
[CrossRef] [PubMed]

J. E. Sharping, M. Fiorentino, and P. Kumar, “Observation of twin-beam-type quantum correlation in optical fiber,” Opt. Lett. 26, 367–369 (2001).
[CrossRef]

J. Fan, A. Migdall, and L. J. Wang, “Efficient generation of correlated photon pairs in a microstructure fiber,” Opt. Lett. 24, 3368–3370 (2005).
[CrossRef]

K. Banaszek, A. B. U’Ren, and I. A. Walmsley, “Generation of correlated photons in controlled spatial modes by downconversion in nonlinear waveguides”, Opt. Lett.,  26, 1367–1369 (2001)
[CrossRef]

K. A. O’Donnell and A. B. U’Ren, “Observation of ultrabroadband, beamlike parametric downconversion,” Opt. Lett. 32, 817–819 (2007).
[CrossRef] [PubMed]

K. F. Lee, J. Chen, C. Liang, X. Li, P. L. Voss, and P. Kumar, “Generation of high-purity telecom-band entangled photon pairs in dispersion-shifted fiber,” Opt. Lett. 31, 1905–1907 (2006).
[CrossRef] [PubMed]

R. H. Stolen, M. A. Bosch, and C. Lin, “Phase matching in birefringent fibers,” Opt. Lett. 6, 213–215 (1981).
[CrossRef] [PubMed]

S. G. Murdoch, R. Leonhardt, and J. D. Harvey, “Polarization modulation instability in weakly birefringent fibers,” Opt. Lett. 20, 866–868 (1995).
[CrossRef] [PubMed]

J. E. Sharping, M. Fiorentino, A. Coker, P. Kumar, and R. S. Windeler, “Four-wave mixing in microstructure fiber,” Opt. Lett. 26, 1048–1050 (2001).
[CrossRef]

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation by four-wave mixing in optical fibers,” Opt. Lett. 31, 1286–1288 (2006).
[CrossRef] [PubMed]

Y.-H. Kim and W. P. Grice, “Measurement of the spectral properties of the two-photon state generated via type II spontaneous parametric downconversion,” Opt. Lett. 30, 908–910 (2005).
[CrossRef] [PubMed]

Phys. Rev. A (12)

A. B. U’Ren, C. Silberhorn, J. L. Ball, K. Banaszek, and I. A. Walmsley, “Characterization of the nonclassical nature of conditionally prepared single photons,” Phys. Rev. A 72, 021802(R) (2005).

Q. Lin, F. Yaman, and G. P. Agrawal, “Photon-pair generation in optical fibers through four-wave mixing: Role of Raman scattering and pump polarization,” Phys. Rev. A 75, 023803 (2007).
[CrossRef]

J. D. Franson, “Nonlocal cancellation of dispersion,” Phys. Rev. A 45, 3126–3132 (1992).
[CrossRef] [PubMed]

R. Erdmann, D. Branning, W. Grice, and I. A. Walmsley, “Restoring dispersion cancellation for entangled photons produced by ultrashort pulses,” Phys. Rev. A,  62, 053810 (2000).
[CrossRef]

W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A 64, 063815 (2001).
[CrossRef]

Y. H. Shih, A. V. Sergienko, and M. H. Rubin, “Einstein-Podolsky-Rosen state for space-time variables in a two-photon interference experiment,” Phys. Rev. A 47, 1288–1293 (1992).
[CrossRef]

P. G. Kwiat, A. M. Steinberg, and R. Y. Chiao, “High-visibility interference in a Bell-inequality experiment for energy and time,” Phys. Rev. A 47, R2472–R2475 (1993).
[CrossRef] [PubMed]

W. P. Grice, R. Erdmann, I. A. Walmsley, and D. Branning, “Spectral distinguishability in ultrafast parametric down-conversion,” Phys. Rev. A 57, R2289–R2292 (1998).
[CrossRef]

J. Chen, X. Li, and P. Kumar, “Two-photon-state generation via four-wave mixing in optical fibers,” Phys. Rev. A 72, 033801 (2005).
[CrossRef]

E. A. Goldschmidt, M. D. Eisaman, J. Fan, S. V. Polyakov, and A. Migdall, “Spectrally bright and broad fiber-based heralded single-photon source,” Phys. Rev. A 78, 013844 (2008).
[CrossRef]

J. Fan, M. D. Eisaman, and A. Migdall, “Bright phase-stable broadband fiber-based source of polarization-entangled photon pairs,” Phys. Rev. A 76, 043836 (2007).
[CrossRef]

A. S. Clark, J. Fulconis, J. G. Rarity, W. J. Wadsworth, and J. L. O’Brien, “All-optical-fiber polarization-based quantum logic gate,” Phys. Rev. A 79, 030303(R) (2009).
[CrossRef]

Phys. Rev. Lett. (14)

J. Fulconis, O. Alibart, J. L. O’Brien, W. J. Wadsworth, and J. G. Rarity, “Nonclassical Interference and Entanglement Generation Using a Photonic Crystal Fiber Pair Photon Source,” Phys. Rev. Lett. 99, 120501 (2007).
[CrossRef] [PubMed]

O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett. 102, 123603 (2009).
[CrossRef] [PubMed]

S. E. Harris, “Chirp and Compress: Toward Single-Cycle Biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[CrossRef] [PubMed]

X. Li, P. L. Voss, J. E. Sharping, and P. Kumar, “Optical-Fiber Source of Polarization-Entangled Photons in the 1550 nm Telecom Band,” Phys. Rev. Lett. 94, 053601 (2005).
[CrossRef] [PubMed]

C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous Frequency Entanglement: Effective Finite Hilbert Space and Entropy Control,” Phys. Rev. Lett. 84, 5304–5307 (2000).
[CrossRef] [PubMed]

A. Valencia, A. Ceré, X. Shi, G. Molina-Terriza, and J. P. Torres, “Shaping theWaveform of Entangled Photons,” Phys. Rev. Lett. 99, 243601 (2007).
[CrossRef]

A. B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Conditional preparation of single photons for scalable quantum-optical networking,” Phys. Rev. Lett.,  93, 093601 (2004).
[CrossRef] [PubMed]

M. B. Nasr, B. E. A. Saleh, A. V. Sergienko, and M. C. Teich, “Demonstration of Dispersion-Canceled Quantum-Optical Coherence Tomography,” Phys. Rev. Lett. 91, 083601 (2003).
[CrossRef] [PubMed]

J. D. Franson, “Bell Inequality for Position and Time,” Phys. Rev. Lett. 62, 2205–2208 (1989).
[CrossRef] [PubMed]

A. M. Steinberg, P. G. Kwiat, and R. Y. Chiao, “Dispersion cancellation in a measurement of the single-photon propagation velocity in glass,” Phys. Rev. Lett. 68, 2421–2424 (1992).
[CrossRef] [PubMed]

M. B. Nasr, S. Carrasco, B. E. A. Saleh, A. V. Sergienko, M. C. Teich, J. P. Torres, L. Torner, D. S. Hum, and M. M. Fejer, “Ultrabroadband Biphotons Generated via Chirped Quasi-Phase-Matched Optical Parametric Down-Conversion,” Phys. Rev. Lett. 100, 183601 (2008).
[CrossRef] [PubMed]

V. Giovannetti, L. Maccone, J. H. Shapiro, and F. N. C. Wong, “Generating Entangled Two-Photon States with Coincident Frequencies,” Phys. Rev. Lett. 88, 183602 (2002).
[CrossRef] [PubMed]

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. C. Wong, and F. X. Kärtner, “Two-Photon Coincident-Frequency Entanglement via Extended Phase Matching,” Phys. Rev. Lett. 94, 083601 (2005).
[CrossRef] [PubMed]

P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded Generation of Ultrafast Single Photons in Pure Quantum States,” Phys. Rev. Lett. 100, 133601 (2008).
[CrossRef] [PubMed]

Science (2)

A. Politi, J. C. F. Matthews, and J. L. O’Brien, “Shor’s Quantum Factoring Algorithm on a Photonic Chip,” Science 325, 1221 (2009).
[CrossRef] [PubMed]

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-Silicon Waveguide Quantum Circuits,” Science 320, 646–649 (2008).
[CrossRef] [PubMed]

Other (6)

S. Kasap and P. Capper, eds., Springer Handbook of Electronic and Photonic Materials (Springer, New York, 2006).

C. Söller, B. Brecht, P. J. Mosley, L. Zang, A. Podlipensky, N. Y. Joly, P. S. Russell, and C. Silberhorn, “Bridging Visible and Telecom Wavelengths with a Single-Mode Broadband Photon Pair Source,” quant-ph:0908.2932v1.

J. B. Altepeter, J. Chen, and P. Kumar, “Entangled State Engineering in Single-Mode Fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD), (Optical Society of America, 2008), paper QMA4.
[PubMed]

M. A. Hall, J. B. Altepeter, and P. Kumar, “Generation of O-Band Polarization Entanglement in SMF-28,” in Conference on Lasers and Electro-Optics/International Quantum Electronics Conference, OSA Technical Digest (CD) (Optical Society of America, 2009), paper ITuE5.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, Burlington, MA, 2006).

M. A. Nielson and I. L. Chuang, Quantum Computation and Quantum Information, (Cambridge University Press, Cambridge, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Theoretical and experimental birefringent phase-matching contours as a function of the pump central wavelength, λp . (b) Magnified view of inset box in (a). The upper red line (♢) shows the idler (λi ) theory (experiment) and the lower blue line (▫) shows the signal (ls) theory (experiment) for the Fibercore HB800G fiber with L=0.2m and Δn=4.3×10-4. Experimental pump power was 15mW, and theory plots neglect the γP contribution in Eq. (3). Experimental uncertainties are smaller than the data symbols.

Fig. 2.
Fig. 2.

Modulus squared of pump spectral amplitudes for different pump bandwidths (top row of plots, Δλ=0.25, 1, and 1.5 nm FWHM), phase-matching function for different fiber lengths (left column of plots, L=21.3, 5.7 and 3.8 cm) and theoretical joint spectra (lower-right 3×3 array of plots) as a function of signal and idler wavelengths for birefringent phase matching. Plots are modeled using a pump central wavelength of 704 nm, the bulk silica dispersion, Δn=4.3×10-4, as measured for the Fibercore HB800G fiber, and neglecting the γP contribution in Eq. (3). The pump bandwidths and fiber lengths were chosen to display the variety of spectral states that can be realized using the birefringent phase-matching technique.

Fig. 3.
Fig. 3.

Raman scatter (green +), signal (blue ⎕) and idler (red ◇) normalized power as a function of the pump power for 1m fiber (Fibercore HB800G) and corresponding fit lines. In the spontaneous regime shown here, the Raman scatter scales linearly with the pump power, while the SFWM scales quadratically.

Fig. 4.
Fig. 4.

Typical spectral fringe pattern (solid blue) and fit (dashed red) used to determine the fiber birefringence. Here the laser was tuned to 700 nm for 0.9m of fiber (Fibercore HB750).

Fig. 5.
Fig. 5.

Experimental setup. (a) The source consists of a Ti:Sapphire laser beam that is spectrally filtered using a folded 4f prism pulse shaper and passes through a polarizing beam splitter (PBS) and half-wave plate (HWP) to control the polarization launched into the birefringent single-mode fiber (BSMF). An achromatic half-wave plate (AHWP) and PBS separate the pump from the SFWM, which are subsequently split at a dichroic mirror (DM) and further filtered using a band-pass filter (BPF) (long-pass filter (LPF)) in the signal (idler) beam. The signal (green, top) and idler (red, bottom) are directly coupled into single-mode fibers (SMF-633 and SMF-830), which can be directed to (b) a spectrometer via 50:50 fiber coupler to measure the marginal spectra of the photons, (c) single-photon counting modules (SPCMs) directly and via 50:50 fiber coupler to measure coincidence rates and conditional g (2)(0), and (d) monochromators set to λs and λi with outputs coupled to SPCMs via multi-mode fibers. Count rates and coincidences are registered using a field-programmable gate array (FPGA) connected to a personal computer (not shown).

Fig. 6.
Fig. 6.

Normalized marginal spectra obtained using the Fibercore HB800G fiber and 15mW average pump power. (a) Signal and idler peaks with residual pump for 3 nm bandwidth FWHM pump centered at 704 nm wavelength with 20 cm fiber length. This technique was used to map out the phase matching curves as a function of the pump central wavelength as shown in Fig. 1 (b). (b) Multi-mode SFWM signal and idler peaks with residual pump and Raman scatter through an edge filter for 5 nm bandwidth FWHM pump centered at 704 nm with 4 cm fiber length.

Fig. 7.
Fig. 7.

(a) Experimental and (b) theoretical joint spectrum for a 10 cm long fiber, 5.4 nm bandwidth FWHM and 704 nm central wavelength pump.

Tables (2)

Tables Icon

Table 1. Birefringence (Δn) Quoted (at 633 nm) and Measured (at 690 nm).

Tables Icon

Table 2. Counts in 300s for g (2)(0) measurement

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ω p 1 + ω p 2 = ω s + ω i ,
Δ k = k p 1 ( ω p 1 ) + k p 2 ( ω p 2 ) k s ( ω s ) k i ( ω i ) + ( 1 B ) γ ( P 1 + P 2 + 2 P 1 P 2 ) = 0 ,
Δ k = 2 ω p c n ( ω p ) ω s c n ( ω s ) ω i c n ( ω i ) + 2 Δ n ω p c + 2 3 γ P .
| ψ = d ω s d ω i f ω s ω i | ω s s | ω i i ,
f ω s ω i = d ω′ α ( ω′ ) α ( ω s + ω i ω′ ) ϕ ω s ω i ) .
τ s ( i ) = L [ k p ( ω p 0 ) k s ( i ) ( ω s ( i ) 0 ) ] ,
Δ ω p 2 / ( r | τ s τ i | ) .
g ( 2 ) ( 0 ) = N ABC N A N AB N AC ,
F p exp p th = d ω s d ω i p exp ω s ω i p th ω s ω i .

Metrics