Abstract

We report on an approach to ultraviolet (UV) photolithography and direct writing where both the exposure pattern and dose are determined by a complementary metal oxide semiconductor (CMOS) controlled micro-pixellated light emitting diode array. The 370nm UV light from a demonstrator 8 x 8 gallium nitride micro-pixel LED is projected onto photoresist covered substrates using two back-to-back microscope objectives, allowing controlled demagnification. In the present setup, the system is capable of delivering up to 8.8W/cm2 per imaged pixel in circular spots of diameter ~8µm. We show example structures written in positive as well as in negative photoresist.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science 251(4995), 767–773 (1991).
    [CrossRef] [PubMed]
  2. C. Rensch, S. Hell, M. Schickfus, and S. Hunklinger, “Laser scanner for direct writing lithography,” Appl. Opt. 28(17), 3754 (1989).
    [CrossRef] [PubMed]
  3. R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
    [CrossRef] [PubMed]
  4. T. Naiser, T. Mai, W. Michel, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
    [CrossRef]
  5. G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
    [CrossRef]
  6. C. W. Jeon, E. Gu, and M. D. Dawson, “Mask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode,” Appl. Phys. Lett. 86(22), 221105 (2005).
    [CrossRef]
  7. H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin, and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Express 16(13), 9918–9926 (2008).
    [CrossRef] [PubMed]
  8. J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
    [CrossRef]
  9. A. Tan, K. Rodgers, J. P. Murrihy, C. O'Mathuna, and J. D. Glennon, “Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopyingPresented at the 14th International Symposium on Microscale Separations and Analysis, Boston, January 13-18, 2001,” Lab Chip 1(1), 7 (2001).
    [CrossRef] [PubMed]
  10. W. K. T. Coltro, E. Piccin, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “A toner-mediated lithographic technology for rapid prototyping of glass microchannels,” Lab Chip 7(7), 931–934 (2007).
    [CrossRef] [PubMed]
  11. M. H. Sorouraddin, M. Amjadi, and M. Safi-Shalamzari, “Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry,” Anal. Chim. Acta 589(1), 84–88 (2007).
    [CrossRef] [PubMed]
  12. G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
    [CrossRef]
  13. T. A. Savas, M. L. Schattenburg, J. M. Carter, and I. Henry, “Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
    [CrossRef]
  14. T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “OML: optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777 (2004).
    [CrossRef]
  15. N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
    [CrossRef]
  16. D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
    [CrossRef]
  17. X. Sun, D. Yin, H. Dai, J. Liu, R. Lu, and S. T. Wu, “Intermittent curing and its effect on pulsed laser-induced photopolymerization,” Appl. Phys. B 92(1), 93–98 (2008).
    [CrossRef]
  18. H. Xu, J. Zhang, K. M. Davitt, Y.-K. Song, and A. V. Nurmikko, “Applications of blue-green and ultraviolet micro-LEDs to biological imaging and detection,” J. Phys. D Appl. Phys. 41(9), 094013 (2008).
    [CrossRef]

2009

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

2008

R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
[CrossRef] [PubMed]

H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin, and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Express 16(13), 9918–9926 (2008).
[CrossRef] [PubMed]

X. Sun, D. Yin, H. Dai, J. Liu, R. Lu, and S. T. Wu, “Intermittent curing and its effect on pulsed laser-induced photopolymerization,” Appl. Phys. B 92(1), 93–98 (2008).
[CrossRef]

H. Xu, J. Zhang, K. M. Davitt, Y.-K. Song, and A. V. Nurmikko, “Applications of blue-green and ultraviolet micro-LEDs to biological imaging and detection,” J. Phys. D Appl. Phys. 41(9), 094013 (2008).
[CrossRef]

2007

W. K. T. Coltro, E. Piccin, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “A toner-mediated lithographic technology for rapid prototyping of glass microchannels,” Lab Chip 7(7), 931–934 (2007).
[CrossRef] [PubMed]

M. H. Sorouraddin, M. Amjadi, and M. Safi-Shalamzari, “Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry,” Anal. Chim. Acta 589(1), 84–88 (2007).
[CrossRef] [PubMed]

2006

T. Naiser, T. Mai, W. Michel, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

2005

C. W. Jeon, E. Gu, and M. D. Dawson, “Mask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode,” Appl. Phys. Lett. 86(22), 221105 (2005).
[CrossRef]

2004

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “OML: optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777 (2004).
[CrossRef]

2003

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

2001

A. Tan, K. Rodgers, J. P. Murrihy, C. O'Mathuna, and J. D. Glennon, “Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopyingPresented at the 14th International Symposium on Microscale Separations and Analysis, Boston, January 13-18, 2001,” Lab Chip 1(1), 7 (2001).
[CrossRef] [PubMed]

1999

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

1996

T. A. Savas, M. L. Schattenburg, J. M. Carter, and I. Henry, “Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[CrossRef]

1992

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

1991

S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science 251(4995), 767–773 (1991).
[CrossRef] [PubMed]

1989

Aksyuk, V.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Amjadi, M.

M. H. Sorouraddin, M. Amjadi, and M. Safi-Shalamzari, “Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry,” Anal. Chim. Acta 589(1), 84–88 (2007).
[CrossRef] [PubMed]

Atkinson, G. M.

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

Basavanhally, N.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Bleeker, A.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “OML: optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777 (2004).
[CrossRef]

Bolle, C. A.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Bower, J. E.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Breadmore, M. C.

R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
[CrossRef] [PubMed]

Carrilho, E.

W. K. T. Coltro, E. Piccin, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “A toner-mediated lithographic technology for rapid prototyping of glass microchannels,” Lab Chip 7(7), 931–934 (2007).
[CrossRef] [PubMed]

Carter, J. M.

T. A. Savas, M. L. Schattenburg, J. M. Carter, and I. Henry, “Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[CrossRef]

Chen, Y.

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

Choksi, N.

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

Cirelli, R. A.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Coltro, W. K. T.

W. K. T. Coltro, E. Piccin, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “A toner-mediated lithographic technology for rapid prototyping of glass microchannels,” Lab Chip 7(7), 931–934 (2007).
[CrossRef] [PubMed]

Dai, H.

X. Sun, D. Yin, H. Dai, J. Liu, R. Lu, and S. T. Wu, “Intermittent curing and its effect on pulsed laser-induced photopolymerization,” Appl. Phys. B 92(1), 93–98 (2008).
[CrossRef]

Davitt, K. M.

H. Xu, J. Zhang, K. M. Davitt, Y.-K. Song, and A. V. Nurmikko, “Applications of blue-green and ultraviolet micro-LEDs to biological imaging and detection,” J. Phys. D Appl. Phys. 41(9), 094013 (2008).
[CrossRef]

Dawson, M. D.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin, and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Express 16(13), 9918–9926 (2008).
[CrossRef] [PubMed]

C. W. Jeon, E. Gu, and M. D. Dawson, “Mask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode,” Appl. Phys. Lett. 86(22), 221105 (2005).
[CrossRef]

Fetter, L.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Fodor, S. P. A.

S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science 251(4995), 767–773 (1991).
[CrossRef] [PubMed]

Fracassi da Silva, J. A.

W. K. T. Coltro, E. Piccin, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “A toner-mediated lithographic technology for rapid prototyping of glass microchannels,” Lab Chip 7(7), 931–934 (2007).
[CrossRef] [PubMed]

Freyer, J.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “OML: optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777 (2004).
[CrossRef]

Fullowan, R.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Gil, D.

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

Girkin, J. M.

Glennon, J. D.

A. Tan, K. Rodgers, J. P. Murrihy, C. O'Mathuna, and J. D. Glennon, “Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopyingPresented at the 14th International Symposium on Microscale Separations and Analysis, Boston, January 13-18, 2001,” Lab Chip 1(1), 7 (2001).
[CrossRef] [PubMed]

Gong, Z.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin, and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Express 16(13), 9918–9926 (2008).
[CrossRef] [PubMed]

Griffin, C.

Gu, E.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin, and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Express 16(13), 9918–9926 (2008).
[CrossRef] [PubMed]

C. W. Jeon, E. Gu, and M. D. Dawson, “Mask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode,” Appl. Phys. Lett. 86(22), 221105 (2005).
[CrossRef]

Guijt, R. M.

R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
[CrossRef] [PubMed]

Guilhabert, B.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin, and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Express 16(13), 9918–9926 (2008).
[CrossRef] [PubMed]

Hell, S.

Henderson, R. K.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

Henry, I.

T. A. Savas, M. L. Schattenburg, J. M. Carter, and I. Henry, “Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[CrossRef]

Hintersteiner, J.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “OML: optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777 (2004).
[CrossRef]

Hunklinger, S.

Jeon, C. W.

C. W. Jeon, E. Gu, and M. D. Dawson, “Mask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode,” Appl. Phys. Lett. 86(22), 221105 (2005).
[CrossRef]

Jessop, P. E.

Klemens, F.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Kornblit, A.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Kubena, R. L.

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

Lee, J.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Liu, J.

X. Sun, D. Yin, H. Dai, J. Liu, R. Lu, and S. T. Wu, “Intermittent curing and its effect on pulsed laser-induced photopolymerization,” Appl. Phys. B 92(1), 93–98 (2008).
[CrossRef]

Lopez, D. O.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Low, Y. L.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Lu, A. T.

S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science 251(4995), 767–773 (1991).
[CrossRef] [PubMed]

Lu, R.

X. Sun, D. Yin, H. Dai, J. Liu, R. Lu, and S. T. Wu, “Intermittent curing and its effect on pulsed laser-induced photopolymerization,” Appl. Phys. B 92(1), 93–98 (2008).
[CrossRef]

Lucio do Lago, C.

W. K. T. Coltro, E. Piccin, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “A toner-mediated lithographic technology for rapid prototyping of glass microchannels,” Lab Chip 7(7), 931–934 (2007).
[CrossRef] [PubMed]

Mai, T.

T. Naiser, T. Mai, W. Michel, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Mansfield, W. M.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Markle, D.

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

Massoubre, D.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin, and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Express 16(13), 9918–9926 (2008).
[CrossRef] [PubMed]

McCord, M.

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

McKendry, J.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

H. X. Zhang, D. Massoubre, J. McKendry, Z. Gong, B. Guilhabert, C. Griffin, E. Gu, P. E. Jessop, J. M. Girkin, and M. D. Dawson, “Individually-addressable flip-chip AlInGaN micropixelated light emitting diode arrays with high continuous and nanosecond output power,” Opt. Express 16(13), 9918–9926 (2008).
[CrossRef] [PubMed]

Menon, R.

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

Michel, W.

T. Naiser, T. Mai, W. Michel, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Miner, J.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Muir, K. R.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

Murrihy, J. P.

A. Tan, K. Rodgers, J. P. Murrihy, C. O'Mathuna, and J. D. Glennon, “Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopyingPresented at the 14th International Symposium on Microscale Separations and Analysis, Boston, January 13-18, 2001,” Lab Chip 1(1), 7 (2001).
[CrossRef] [PubMed]

Naiser, T.

T. Naiser, T. Mai, W. Michel, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Nurmikko, A. V.

H. Xu, J. Zhang, K. M. Davitt, Y.-K. Song, and A. V. Nurmikko, “Applications of blue-green and ultraviolet micro-LEDs to biological imaging and detection,” J. Phys. D Appl. Phys. 41(9), 094013 (2008).
[CrossRef]

Oldham, W.

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

O'Mathuna, C.

A. Tan, K. Rodgers, J. P. Murrihy, C. O'Mathuna, and J. D. Glennon, “Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopyingPresented at the 14th International Symposium on Microscale Separations and Analysis, Boston, January 13-18, 2001,” Lab Chip 1(1), 7 (2001).
[CrossRef] [PubMed]

Ott, A.

T. Naiser, T. Mai, W. Michel, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Papazian, A. R.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Pardo, F.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Peabody, M.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Pease, R. F. W.

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

Piccin, E.

W. K. T. Coltro, E. Piccin, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “A toner-mediated lithographic technology for rapid prototyping of glass microchannels,” Lab Chip 7(7), 931–934 (2007).
[CrossRef] [PubMed]

Pickard, D. S.

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

Pirrung, M. C.

S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science 251(4995), 767–773 (1991).
[CrossRef] [PubMed]

Rae, B. R.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

Read, J. L.

S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science 251(4995), 767–773 (1991).
[CrossRef] [PubMed]

Rensch, C.

Renshaw, D.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

Rodgers, K.

A. Tan, K. Rodgers, J. P. Murrihy, C. O'Mathuna, and J. D. Glennon, “Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopyingPresented at the 14th International Symposium on Microscale Separations and Analysis, Boston, January 13-18, 2001,” Lab Chip 1(1), 7 (2001).
[CrossRef] [PubMed]

Safi-Shalamzari, M.

M. H. Sorouraddin, M. Amjadi, and M. Safi-Shalamzari, “Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry,” Anal. Chim. Acta 589(1), 84–88 (2007).
[CrossRef] [PubMed]

Sandstrom, T.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “OML: optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777 (2004).
[CrossRef]

Savas, T. A.

T. A. Savas, M. L. Schattenburg, J. M. Carter, and I. Henry, “Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[CrossRef]

Schattenburg, M. L.

T. A. Savas, M. L. Schattenburg, J. M. Carter, and I. Henry, “Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[CrossRef]

Schickfus, M.

Shroff, Y.

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

Simon, M. E.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Smith, H. I.

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

Solas, D.

S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science 251(4995), 767–773 (1991).
[CrossRef] [PubMed]

Song, Y.-K.

H. Xu, J. Zhang, K. M. Davitt, Y.-K. Song, and A. V. Nurmikko, “Applications of blue-green and ultraviolet micro-LEDs to biological imaging and detection,” J. Phys. D Appl. Phys. 41(9), 094013 (2008).
[CrossRef]

Sorouraddin, M. H.

M. H. Sorouraddin, M. Amjadi, and M. Safi-Shalamzari, “Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry,” Anal. Chim. Acta 589(1), 84–88 (2007).
[CrossRef] [PubMed]

Sorsch, T.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Stratton, F. P.

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

Stryer, L.

S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science 251(4995), 767–773 (1991).
[CrossRef] [PubMed]

Sun, X.

X. Sun, D. Yin, H. Dai, J. Liu, R. Lu, and S. T. Wu, “Intermittent curing and its effect on pulsed laser-induced photopolymerization,” Appl. Phys. B 92(1), 93–98 (2008).
[CrossRef]

Tan, A.

A. Tan, K. Rodgers, J. P. Murrihy, C. O'Mathuna, and J. D. Glennon, “Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopyingPresented at the 14th International Symposium on Microscale Separations and Analysis, Boston, January 13-18, 2001,” Lab Chip 1(1), 7 (2001).
[CrossRef] [PubMed]

Tennant, D. M.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Troost, K.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “OML: optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777 (2004).
[CrossRef]

van der Mast, K.

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “OML: optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777 (2004).
[CrossRef]

Watson, G. P.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Weiner, J. S.

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Wolfe, J. C.

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

Wu, S. T.

X. Sun, D. Yin, H. Dai, J. Liu, R. Lu, and S. T. Wu, “Intermittent curing and its effect on pulsed laser-induced photopolymerization,” Appl. Phys. B 92(1), 93–98 (2008).
[CrossRef]

Xu, H.

H. Xu, J. Zhang, K. M. Davitt, Y.-K. Song, and A. V. Nurmikko, “Applications of blue-green and ultraviolet micro-LEDs to biological imaging and detection,” J. Phys. D Appl. Phys. 41(9), 094013 (2008).
[CrossRef]

Yin, D.

X. Sun, D. Yin, H. Dai, J. Liu, R. Lu, and S. T. Wu, “Intermittent curing and its effect on pulsed laser-induced photopolymerization,” Appl. Phys. B 92(1), 93–98 (2008).
[CrossRef]

Zhang, H. X.

Zhang, J.

H. Xu, J. Zhang, K. M. Davitt, Y.-K. Song, and A. V. Nurmikko, “Applications of blue-green and ultraviolet micro-LEDs to biological imaging and detection,” J. Phys. D Appl. Phys. 41(9), 094013 (2008).
[CrossRef]

Anal. Chim. Acta

M. H. Sorouraddin, M. Amjadi, and M. Safi-Shalamzari, “Simple and rapid methods for the fabrication of polymeric and glass chips for using in analytical chemistry,” Anal. Chim. Acta 589(1), 84–88 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. B

X. Sun, D. Yin, H. Dai, J. Liu, R. Lu, and S. T. Wu, “Intermittent curing and its effect on pulsed laser-induced photopolymerization,” Appl. Phys. B 92(1), 93–98 (2008).
[CrossRef]

Appl. Phys. Lett.

C. W. Jeon, E. Gu, and M. D. Dawson, “Mask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode,” Appl. Phys. Lett. 86(22), 221105 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

J. McKendry, B. R. Rae, Z. Gong, K. R. Muir, B. Guilhabert, D. Massoubre, E. Gu, D. Renshaw, M. D. Dawson, and R. K. Henderson, “Individually-Addressable AlInGaN Micro-LED Arrays with CMOS Control and Sub-Nanosecond Output Pulses,” IEEE Photon. Technol. Lett. 21(12), 811–813 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

H. Xu, J. Zhang, K. M. Davitt, Y.-K. Song, and A. V. Nurmikko, “Applications of blue-green and ultraviolet micro-LEDs to biological imaging and detection,” J. Phys. D Appl. Phys. 41(9), 094013 (2008).
[CrossRef]

J. Vac. Sci. Technol. B

N. Choksi, D. S. Pickard, M. McCord, R. F. W. Pease, Y. Shroff, Y. Chen, W. Oldham, and D. Markle, “Maskless extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 17(6), 3047–3051 (1999).
[CrossRef]

D. Gil, R. Menon, and H. I. Smith, “The case for diffractive optics in maskless lithography,” J. Vac. Sci. Technol. B 21(6), 2810–2814 (2003).
[CrossRef]

G. M. Atkinson, F. P. Stratton, R. L. Kubena, and J. C. Wolfe, “30 nm resolution zero proximity lithography on high-Z substrates,” J. Vac. Sci. Technol. B 10(6), 3104–3108 (1992).
[CrossRef]

T. A. Savas, M. L. Schattenburg, J. M. Carter, and I. Henry, “Smith, “Large-area achromatic interferometric lithography for 100 nm period gratings and grids,” J. Vac. Sci. Technol. B 14(6), 4167–4170 (1996).
[CrossRef]

G. P. Watson, V. Aksyuk, M. E. Simon, D. M. Tennant, R. A. Cirelli, W. M. Mansfield, F. Pardo, D. O. Lopez, C. A. Bolle, A. R. Papazian, N. Basavanhally, J. Lee, R. Fullowan, F. Klemens, J. Miner, A. Kornblit, T. Sorsch, L. Fetter, M. Peabody, J. E. Bower, J. S. Weiner, and Y. L. Low, “Spatial light modulator for maskless optical projection lithography,” J. Vac. Sci. Technol. B 24(6), 2852 (2006).
[CrossRef]

Lab Chip

A. Tan, K. Rodgers, J. P. Murrihy, C. O'Mathuna, and J. D. Glennon, “Rapid fabrication of microfluidic devices in poly(dimethylsiloxane) by photocopyingPresented at the 14th International Symposium on Microscale Separations and Analysis, Boston, January 13-18, 2001,” Lab Chip 1(1), 7 (2001).
[CrossRef] [PubMed]

W. K. T. Coltro, E. Piccin, J. A. Fracassi da Silva, C. Lucio do Lago, and E. Carrilho, “A toner-mediated lithographic technology for rapid prototyping of glass microchannels,” Lab Chip 7(7), 931–934 (2007).
[CrossRef] [PubMed]

R. M. Guijt and M. C. Breadmore, “Maskless photolithography using UV LEDs,” Lab Chip 8(8), 1402–1404 (2008).
[CrossRef] [PubMed]

Opt. Express

Proc. SPIE

T. Sandstrom, A. Bleeker, J. Hintersteiner, K. Troost, J. Freyer, and K. van der Mast, “OML: optical maskless lithography for economic design prototyping and small-volume production,” Proc. SPIE 5377, 777 (2004).
[CrossRef]

Rev. Sci. Instrum.

T. Naiser, T. Mai, W. Michel, and A. Ott, “Versatile maskless microscope projection photolithography system and its application in light-directed fabrication of DNA microarrays,” Rev. Sci. Instrum. 77(6), 063711 (2006).
[CrossRef]

Science

S. P. A. Fodor, J. L. Read, M. C. Pirrung, L. Stryer, A. T. Lu, and D. Solas, “Light-directed, spatially addressable parallel chemical synthesis,” Science 251(4995), 767–773 (1991).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) CMOS driven micro-LED device with pixels turned on to show a representative double square pattern, and (b) the computer control interface as the pattern in (a) is addressed.

Fig. 2
Fig. 2

A photograph of the micro-projection setup (a) and schematic of the same (b).

Fig. 3
Fig. 3

Four LED pixels turned on., (a) on the device itself and (b) reflection off a mirror at the sample position, showing the focal spot size at the applications plane. The dashed line corresponds to the trace of the intensity profile plotted in (c).

Fig. 4
Fig. 4

The relationship between average projected power and pulse width is linear for long enough pulses. Repetition rate = 9.75 MHz throughout. The insets are optical micrographs of exposed dots in NOA81 negative photoresist on glass substrates exposed for 40s at 5ns, 20ns and 40ns pulse width. The spot diameters are 11µm, 17µm and 24µm, respectively.

Fig. 6
Fig. 6

(a)‘IoP’ (Institute of Photonics) pattern in NOA81. The exposed dots are 8-9µm in diameter. (b) Four parallel channels written in Microposit S1805 photoresist at a velocity of 100µm/s. Lines are 9-11µm wide. The two different patterns were chosen to show the static and dynamic writing capability of the system.

Fig. 5
Fig. 5

(a) Three lines in NOA81 written in, respectively, CW mode, with 50ns pulses and with 40ns pulses at a velocity of 5µm/s. Widths are 11µm, 8µm and 8µm respectively. (b) Close up on the middle line showing good uniformity of the line width.

Fig. 7
Fig. 7

(a) Micrograph showing an array of exposed dots in S1818, each with a diameter of ~9µm. (b) Oblique SEM image of the same array, showing well defined sidewalls and good dot to dot uniformity.

Tables (1)

Tables Icon

Table 1 Intensities delivered by different collection and projection objectives. Image plane spot sizes measured in FWHM are in parentheses. Spot sizes have also been established by measurements in exposed photoresist and the errors in the measurements below are determined to be less than ± 10% throughout.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E = 2 P π R 2 v R 2 y 2 ,

Metrics