Abstract

‘Laser damage mitigation’ is a process developed to prevent the growth of nanosecond laser-initiated damage sites under successive irradiation. It consists of re-fusing the damage area with a CO2 laser. In this paper we investigate the stress field created around mitigated sites which could have an influence on the efficiency of the process. A numerical model of CO2 laser interaction with fused silica is developed. It takes into account laser energy absorption, heat transfer, thermally induced stress and birefringence. Residual stress near mitigated sites in fused silica samples is characterized with specific photoelastic methods and theoretical data are compared to experiments. The stress distribution and quantitative values of stress levels are obtained for sites treated with the CO2 laser in various conditions of energy deposition (beam size, pulse duration, incident power). The results provided evidence that the presence of birefringence/residual stress around the mitigated sites has an effect on their laser damage resistance.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Impact of two CO2 laser heatings for damage repairing on fused silica surface

P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert
Opt. Express 18(25) 26068-26076 (2010)

Initiation of laser-induced damage sites in fused silica optical components

Bertrand Bertussi, Philippe Cormont, Stéphanie Palmier, Philippe Legros, and Jean-Luc Rullier
Opt. Express 17(14) 11469-11479 (2009)

Crack arrest and stress dependence of laser-induced surface damage in fused-silica and borosilicate glass

Faiz Dahmani, John C. Lambropoulos, Ansgar W. Schmid, Semyon Papernov, and Stephen J. Burns
Appl. Opt. 38(33) 6892-6903 (1999)

References

  • View by:
  • |
  • |
  • |

  1. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
    [Crossref] [PubMed]
  2. S. G. Demos, M. Staggs, and M. R. Kozlowski, “Investigation of processes leading to damage growth in optical materials for large-aperture lasers,” Appl. Opt. 41, 3628–3633 (2002).
    [Crossref] [PubMed]
  3. R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubes, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
    [Crossref]
  4. R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden, and R. Hackel, “Enhanced performance of large of optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2003).
    [Crossref]
  5. M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
    [Crossref]
  6. M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a process model for CO2 laser mitigation of damage growth in fused silica,” Proc. SPIE 5273, 145–154 (2004).
    [Crossref]
  7. E. Mendez, K.M. Nowak, H. J. Baker, F. J. Villareal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Opt. Express 45, 5358–5367 (2006).
  8. G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
    [Crossref]
  9. S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
    [Crossref]
  10. I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, C9910–C9910 (2005).
  11. A. During, P. Bouchut, J. G. Coutar, C. Leymarie, and H. Bercegol, “Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam,” Proc. SPIE 6403, 40323–40323 (2007).
  12. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, “Characterization of laser induced damage sites in optical components,” Opt. Express 10, 1444–1450 (2002).
    [PubMed]
  13. G. Guss, I. Bass, R. Hackel, C. Mailhiot, and S. Demos, “In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography,” Appl. Opt. 47, 4569–4576 (2008).
    [Crossref] [PubMed]
  14. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17, 11469–11479 (2009).
    [Crossref] [PubMed]
  15. M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97, 113519 (2005).
    [Crossref]
  16. S. Mainguy and B. Le Garrec, “Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects,” J. de Phys. IV 133, 653–655 (2006).
  17. M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, A7200–A7200 (2008).
  18. L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
    [Crossref]
  19. M. Von Allmen, Laser-beam interactions with material, (Spinger-Verlag, 1987).
  20. A. D. McLachlan and F. P. Meyer, “Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths,” Appl. Opt. 26, 1728–1731 (1987).
    [Crossref] [PubMed]
  21. http://optics.heraeus-quarzglas.com
  22. http://www.comsol.com/
  23. J. Zarzyski, “Les verres et l’état vitreux”, Masson (1982).
  24. S. Huard, Polarization of light, (John Wiley and Sons, 1997).
  25. Y. S. Touloukian, “Thermo-physical propoerties of matter vol.3 - Thermal conductivity of liquids and gases,” IFI/Plenum, 1970.
  26. F. Dahmani, J.C. Lambropoulos, A. W. Schmid, S. Papernov, and S. J. Burns, “Crack Arrest and Stress Dependence of Laser-Induced Surface Damage in Fused-Silica and Borosilicate Glass,” Appl. Opt. 38, 6892–6903 (1999).
    [Crossref]
  27. L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
    [Crossref]

2009 (1)

2008 (3)

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, A7200–A7200 (2008).

G. Guss, I. Bass, R. Hackel, C. Mailhiot, and S. Demos, “In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography,” Appl. Opt. 47, 4569–4576 (2008).
[Crossref] [PubMed]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

2007 (4)

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
[Crossref]

A. During, P. Bouchut, J. G. Coutar, C. Leymarie, and H. Bercegol, “Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam,” Proc. SPIE 6403, 40323–40323 (2007).

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
[Crossref]

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
[Crossref]

2006 (2)

S. Mainguy and B. Le Garrec, “Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects,” J. de Phys. IV 133, 653–655 (2006).

E. Mendez, K.M. Nowak, H. J. Baker, F. J. Villareal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Opt. Express 45, 5358–5367 (2006).

2005 (3)

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, C9910–C9910 (2005).

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
[Crossref] [PubMed]

M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97, 113519 (2005).
[Crossref]

2004 (1)

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a process model for CO2 laser mitigation of damage growth in fused silica,” Proc. SPIE 5273, 145–154 (2004).
[Crossref]

2003 (2)

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden, and R. Hackel, “Enhanced performance of large of optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2003).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[Crossref]

2002 (3)

1999 (1)

1987 (1)

Baker, H. J.

E. Mendez, K.M. Nowak, H. J. Baker, F. J. Villareal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Opt. Express 45, 5358–5367 (2006).

Bass, I.

G. Guss, I. Bass, R. Hackel, C. Mailhiot, and S. Demos, “In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography,” Appl. Opt. 47, 4569–4576 (2008).
[Crossref] [PubMed]

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
[Crossref]

Bass, I. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, A7200–A7200 (2008).

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, C9910–C9910 (2005).

Bercegol, H.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie, and H. Bercegol, “Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam,” Proc. SPIE 6403, 40323–40323 (2007).

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
[Crossref]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon, and J.-C. Birolleau, “Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm,” Opt. Express 13, 10163–10171 (2005).
[Crossref] [PubMed]

Bertussi, B.

Birolleau, J.-C.

Boley, C. D.

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a process model for CO2 laser mitigation of damage growth in fused silica,” Proc. SPIE 5273, 145–154 (2004).
[Crossref]

Borden, M.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden, and R. Hackel, “Enhanced performance of large of optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2003).
[Crossref]

Borowiec, A.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
[Crossref]

Bouchut, P.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie, and H. Bercegol, “Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam,” Proc. SPIE 6403, 40323–40323 (2007).

Bouillet, S.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
[Crossref]

Bruere, J.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden, and R. Hackel, “Enhanced performance of large of optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2003).
[Crossref]

Brusasco, R. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubes, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[Crossref]

Burns, S. J.

Butler, J. A.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubes, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[Crossref]

Commandré, M.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

Cormont, P.

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17, 11469–11479 (2009).
[Crossref] [PubMed]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

Courchinoux, R.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
[Crossref]

Coutar, J. G.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie, and H. Bercegol, “Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam,” Proc. SPIE 6403, 40323–40323 (2007).

Dahmani, F.

Danilewsky, A. N.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
[Crossref]

Demos, S.

Demos, S. G.

Donval, T.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
[Crossref]

Draggoo, V.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
[Crossref]

During, A.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie, and H. Bercegol, “Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam,” Proc. SPIE 6403, 40323–40323 (2007).

Feit, M. D.

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a process model for CO2 laser mitigation of damage growth in fused silica,” Proc. SPIE 5273, 145–154 (2004).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[Crossref]

Fujimoto, J.

Gallais, L.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

Guss, G.

G. Guss, I. Bass, R. Hackel, C. Mailhiot, and S. Demos, “In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography,” Appl. Opt. 47, 4569–4576 (2008).
[Crossref] [PubMed]

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
[Crossref]

Guss, G. M.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, A7200–A7200 (2008).

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, C9910–C9910 (2005).

Hackel, R.

G. Guss, I. Bass, R. Hackel, C. Mailhiot, and S. Demos, “In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography,” Appl. Opt. 47, 4569–4576 (2008).
[Crossref] [PubMed]

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
[Crossref]

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden, and R. Hackel, “Enhanced performance of large of optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2003).
[Crossref]

Hackel, R. P.

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, C9910–C9910 (2005).

Hall, D. R.

E. Mendez, K.M. Nowak, H. J. Baker, F. J. Villareal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Opt. Express 45, 5358–5367 (2006).

Halpin, J.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden, and R. Hackel, “Enhanced performance of large of optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2003).
[Crossref]

Hrubes, L. W.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubes, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[Crossref]

Huard, S.

S. Huard, Polarization of light, (John Wiley and Sons, 1997).

Josse, M.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
[Crossref]

Kozlowski, M. R.

Lamaignere, L.

Lamaignère, L.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
[Crossref]

Lambropoulos, J.C.

Lancaster, M.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
[Crossref]

Lankinen, A.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
[Crossref]

Le Garrec, B.

S. Mainguy and B. Le Garrec, “Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects,” J. de Phys. IV 133, 653–655 (2006).

Legros, P.

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17, 11469–11479 (2009).
[Crossref] [PubMed]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

Leymarie, C.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie, and H. Bercegol, “Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam,” Proc. SPIE 6403, 40323–40323 (2007).

Lowney, D.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
[Crossref]

Mailhiot, C.

Mainguy, S.

S. Mainguy and B. Le Garrec, “Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects,” J. de Phys. IV 133, 653–655 (2006).

Mak, P.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
[Crossref]

Matthews, M. J.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, A7200–A7200 (2008).

McLachlan, A. D.

McNally, P. J.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
[Crossref]

Mendez, E.

E. Mendez, K.M. Nowak, H. J. Baker, F. J. Villareal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Opt. Express 45, 5358–5367 (2006).

Meyer, F. P.

Minoshima, K.

Neauport, J.

Nowak, K.M.

E. Mendez, K.M. Nowak, H. J. Baker, F. J. Villareal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Opt. Express 45, 5358–5367 (2006).

Palmier, S.

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express 17, 11469–11479 (2009).
[Crossref] [PubMed]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

Papernov, S.

Payne, S.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
[Crossref]

Penetrante, B. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubes, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[Crossref]

Peterson, J.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden, and R. Hackel, “Enhanced performance of large of optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2003).
[Crossref]

Pilon, F.

Poncetta, J.-C.

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
[Crossref]

Prasad, R.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden, and R. Hackel, “Enhanced performance of large of optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2003).
[Crossref]

Ravizza, F. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, A7200–A7200 (2008).

Rotter, M.

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a process model for CO2 laser mitigation of damage growth in fused silica,” Proc. SPIE 5273, 145–154 (2004).
[Crossref]

Rubenchik, A. M.

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a process model for CO2 laser mitigation of damage growth in fused silica,” Proc. SPIE 5273, 145–154 (2004).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[Crossref]

Rullier, J.-L.

Rullier, J-L

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

Schmid, A. W.

Staggs, M.

Stevens-Kalceff, M. A.

M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97, 113519 (2005).
[Crossref]

Touloukian, Y. S.

Y. S. Touloukian, “Thermo-physical propoerties of matter vol.3 - Thermal conductivity of liquids and gases,” IFI/Plenum, 1970.

Tuomi, T. O.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
[Crossref]

Villareal, F. J.

E. Mendez, K.M. Nowak, H. J. Baker, F. J. Villareal, and D. R. Hall, “Localized CO2 laser damage repair of fused silica optics,” Opt. Express 45, 5358–5367 (2006).

Von Allmen, M.

M. Von Allmen, Laser-beam interactions with material, (Spinger-Verlag, 1987).

Widmayer, C. C

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, A7200–A7200 (2008).

Wong, J.

M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97, 113519 (2005).
[Crossref]

Xu, L.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
[Crossref]

Zarzyski, J.

J. Zarzyski, “Les verres et l’état vitreux”, Masson (1982).

Appl. Opt. (4)

Appl. Surface Science (1)

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier, and P. Legros “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surface Science 255, 5532–5536 (2008).
[Crossref]

J. Appl. Phys. (1)

M. A. Stevens-Kalceff and J. Wong, “Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser,” J. Appl. Phys. 97, 113519 (2005).
[Crossref]

J. de Phys. IV (1)

S. Mainguy and B. Le Garrec, “Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects,” J. de Phys. IV 133, 653–655 (2006).

Opt. Express (4)

Proc. SPIE (8)

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster, and P. Mak, “Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser,” Proc. SPIE 6403, 64030M (2007).
[Crossref]

I. L. Bass, G. M. Guss, and R. P. Hackel, “Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser,” Proc. SPIE 5991, C9910–C9910 (2005).

A. During, P. Bouchut, J. G. Coutar, C. Leymarie, and H. Bercegol, “Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam,” Proc. SPIE 6403, 40323–40323 (2007).

R. M. Brusasco, B. M. Penetrante, J. A. Butler, and L. W. Hrubes, “Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica,” Proc. SPIE 4679, 40–47 (2002).
[Crossref]

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden, and R. Hackel, “Enhanced performance of large of optics using UV and IR lasers,” Proc. SPIE 5273, 288–295 (2003).
[Crossref]

M. D. Feit and A. M. Rubenchik, “Mechanisms of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE 4932, 91–102 (2003).
[Crossref]

M. D. Feit, A. M. Rubenchik, C. D. Boley, and M. Rotter, “Development of a process model for CO2 laser mitigation of damage growth in fused silica,” Proc. SPIE 5273, 145–154 (2004).
[Crossref]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE 6720, A7200–A7200 (2008).

Rev. Scientific Instruments (1)

L. Lamaignère, S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, “An accurate, repeatable, and well characterized measurement of laser damage density of optical materials,” Rev. Scientific Instruments 78, 103105 (2007).
[Crossref]

Semicond. Sci. Technol. (1)

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi, and A. N. Danilewsky, “Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain,” Semicond. Sci. Technol. 22, 970–979 (2007).
[Crossref]

Other (6)

http://optics.heraeus-quarzglas.com

http://www.comsol.com/

J. Zarzyski, “Les verres et l’état vitreux”, Masson (1982).

S. Huard, Polarization of light, (John Wiley and Sons, 1997).

Y. S. Touloukian, “Thermo-physical propoerties of matter vol.3 - Thermal conductivity of liquids and gases,” IFI/Plenum, 1970.

M. Von Allmen, Laser-beam interactions with material, (Spinger-Verlag, 1987).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Observation by Nomarski microscopy of mitigated sites after the laser damage test procedure. a- after one shot at 11J/cm2, b- after 10 shots at 11J/cm2. The red circle is plotted to evidence the circular symmetry of the damage appearance.

Fig. 2.
Fig. 2.

Relation between the “damage initiation diameter” and the crater diameter.

Fig. 3.
Fig. 3.

Polariscope developed for the observation of mitigated sites. W: White light collimated source, P/A: high contrast polarizer and analyzer (10000:1); S: silica sample; C: Camera (12.5 million-pixel, 12-bits, cooled color camera), O: long working distance objective (X10).

Fig. 4.
Fig. 4.

Observation of a mitigated site, with parameters of the case 4, by Nomarski microscopy (a) and with the polariscope (b).

Fig. 5.
Fig. 5.

a.The principal directions of the stress around the mitigated site, which are either parallel or orthogonal to the radius. b. Schematic representation of the resulting polarization state at the output of a mitigated site for incident light linearly polarized in the vertical direction.

Fig. 6.
Fig. 6.

Relation between the “maximum retardance diameter” and the crater diameter.

Fig. 7.
Fig. 7.

Observation of two craters with the polariscope. The damages are indicated with the red arrows. Notice that the polarizers were not perfectly orthogonal in order to image simultaneously the sample surface and the stress field.

Fig. 8.
Fig. 8.

Experimental setup for measuring birefringence with a Soleil-Babinet compensator (SBC). He-Ne: 0.5mW Helium-Neon Laser; P/A: high contrast polarizer and analyzer (10000:1); λ/2: half wave plate; L1: microscope objective (X20); S: silica sample; L2: microscope objective (X10).

Fig. 9.
Fig. 9.

Relation between the maximum retardance measured and the crater depth for the 6 cases under study.

Fig. 10.
Fig. 10.

Geometry used in the model

Fig. 11.
Fig. 11.

Calculated temperature distribution in fused silica at the end of the CO2 laser irradiation for parameters of the case 3. The crater is delimited by the white line.

Fig. 12.
Fig. 12.

Calculated hoop (a) and radial (b) stresses in fused silica at the end of the CO2 laser irradiation for the parameters of the case 3. The crater is delimited by the white line.

Fig. 13.
Fig. 13.

Description of the index ellipsoïd as used in our calculation.

Fig. 14.
Fig. 14.

Theoretical retardance for the case 3. The crater diameter is delimited by the dashed line.

Fig. 15.
Fig. 15.

Calculated strain repartition in fused silica at the end of the CO2 laser irradiation for parameters of the three cases with a pulse length of 250 ms. Radial strains are represented on the upper part (a), and hoop at the lower (b). Craters sizes and positions of each maximum of retardance are indicated with a full and dashed white line respectively.

Tables (1)

Tables Icon

Table 1. Details of the different irradiation conditions and dimensional characteristics of the CO2-craters studied. The crater dimensions are measured with an optical profiler.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Q = α ( 1 R ) p π a 2 exp r 2 a 2 exp ( α z )
ρ C T t + . ( k T ) = Q
ε r = u r ; ε ϕ = u r ; ε z = w z ; γ rz = u z + w r
σ ij = D ijkl ε kl
1 n ij 2 = [ 1 n ij 2 ] [ σ ] = 0 + Δ 1 n ij 2
Δ 1 n ij 2 = p ijmn ε mn
n x = n 0 1 2 n 0 3 [ p 11 ε x + p 12 ( ε y + ε z ) ]
n y = n 0 1 2 n 0 3 [ p 11 ε y + p 12 ( ε x + ε z ) ]
B = n x n y = 1 2 n 0 3 [ p 11 ( ε x ε y ) + p 12 ( ε y ε x ) ]
Γ = 0 e B ( z ) d z

Metrics