Abstract

‘Laser damage mitigation’ is a process developed to prevent the growth of nanosecond laser-initiated damage sites under successive irradiation. It consists of re-fusing the damage area with a CO2 laser. In this paper we investigate the stress field created around mitigated sites which could have an influence on the efficiency of the process. A numerical model of CO2 laser interaction with fused silica is developed. It takes into account laser energy absorption, heat transfer, thermally induced stress and birefringence. Residual stress near mitigated sites in fused silica samples is characterized with specific photoelastic methods and theoretical data are compared to experiments. The stress distribution and quantitative values of stress levels are obtained for sites treated with the CO2 laser in various conditions of energy deposition (beam size, pulse duration, incident power). The results provided evidence that the presence of birefringence/residual stress around the mitigated sites has an effect on their laser damage resistance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon and J.-C. Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005).
    [CrossRef] [PubMed]
  2. S. G. Demos, M. Staggs, and M. R. Kozlowski, "Investigation of processes leading to damage growth in optical materials for large-aperture lasers," Appl. Opt. 41, 3628-3633 (2002).
    [CrossRef] [PubMed]
  3. R. M. Brusasco, B. M. Penetrante, J. A. Butler and L. W. Hrubes, "Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica," Proc. SPIE 4679, 40-47 (2002).
    [CrossRef]
  4. R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003).
    [CrossRef]
  5. M. D. Feit and A. M. Rubenchik, "Mechanisms of CO2 laser mitigation of laser damage growth in fused silica," Proc. SPIE 4932, 91-102 (2003).
    [CrossRef]
  6. M. D. Feit, A. M. Rubenchik, C. D. Boley and M. Rotter, "Development of a process model for CO2 laser mitigation of damage growth in fused silica," Proc. SPIE 5273, 145-154 (2004).
    [CrossRef]
  7. E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villareal and D. R. Hall, "Localized CO2 laser damage repair of fused silica optics," Opt. Express 45, 5358-5367 (2006).
  8. G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
    [CrossRef]
  9. S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
    [CrossRef]
  10. I. L. Bass, G. M. Guss and R. P. Hackel, "Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser," Proc. SPIE 5991, C9910-C9910 (2005).
  11. A. During, P. Bouchut, J. G. Coutar, C. Leymarie and H. Bercegol, "Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam," Proc. SPIE 6403, 40323-40323 (2007).
  12. S. G. Demos, M. Staggs, K. Minoshima, and J. Fujimoto, "Characterization of laser induced damage sites in optical components," Opt. Express 10, 1444-1450 (2002).
    [PubMed]
  13. G. Guss, I. Bass, R. Hackel, C. Mailhiot and S. Demos, "In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography," Appl. Opt. 47, 4569-4576 (2008).
    [CrossRef] [PubMed]
  14. B. Bertussi, P. Cormont, S. Palmier, P. Legros and J.-L. Rullier, "Initiation of laser-induced damage sites in fused silica optical components," Opt. Express 17, 11469-11479 (2009).
    [CrossRef] [PubMed]
  15. M. A. Stevens-Kalceff and J. Wong, "Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser," J. Appl. Phys. 97, 113519 (2005).
    [CrossRef]
  16. S. Mainguy and B. Le Garrec, "Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects," J. de Phys. IV 133, 653-655 (2006).
  17. M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer and F. L. Ravizza, "Downstream intensification effects associated with CO2 laser mitigation of fused silica," Proc. SPIE 6720, A7200-A7200 (2008).
  18. L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
    [CrossRef]
  19. M. Von Allmen, Laser-beam interactions with material, (Spinger-Verlag, 1987).
  20. A. D. McLachlan and F. P. Meyer, "Temperature dependence of the extinction coefficient of fused silica for CO2 laser wavelengths," Appl. Opt. 26, 1728-1731 (1987).
    [CrossRef] [PubMed]
  21. http://optics.heraeus-quarzglas.com
  22. http://www.comsol.com/
  23. J. Zarzyski, "Les verres et l'état vitreux", Masson (1982).
  24. S. Huard, Polarization of light, (John Wiley and Sons, 1997).
  25. Y. S. Touloukian, "Thermo-physical propoerties of matter vol.3 - Thermal conductivity of liquids and gases," IFI/Plenum, 1970.
  26. F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov and S. J. Burns, "Crack Arrest and Stress Dependence of Laser-Induced Surface Damage in Fused-Silica and Borosilicate Glass," Appl. Opt. 38, 6892-6903 (1999).
    [CrossRef]
  27. L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
    [CrossRef]

2009

2008

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer and F. L. Ravizza, "Downstream intensification effects associated with CO2 laser mitigation of fused silica," Proc. SPIE 6720, A7200-A7200 (2008).

G. Guss, I. Bass, R. Hackel, C. Mailhiot and S. Demos, "In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography," Appl. Opt. 47, 4569-4576 (2008).
[CrossRef] [PubMed]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

2007

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
[CrossRef]

A. During, P. Bouchut, J. G. Coutar, C. Leymarie and H. Bercegol, "Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam," Proc. SPIE 6403, 40323-40323 (2007).

L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
[CrossRef]

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
[CrossRef]

2006

S. Mainguy and B. Le Garrec, "Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects," J. de Phys. IV 133, 653-655 (2006).

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villareal and D. R. Hall, "Localized CO2 laser damage repair of fused silica optics," Opt. Express 45, 5358-5367 (2006).

2005

I. L. Bass, G. M. Guss and R. P. Hackel, "Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser," Proc. SPIE 5991, C9910-C9910 (2005).

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon and J.-C. Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005).
[CrossRef] [PubMed]

M. A. Stevens-Kalceff and J. Wong, "Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser," J. Appl. Phys. 97, 113519 (2005).
[CrossRef]

2004

M. D. Feit, A. M. Rubenchik, C. D. Boley and M. Rotter, "Development of a process model for CO2 laser mitigation of damage growth in fused silica," Proc. SPIE 5273, 145-154 (2004).
[CrossRef]

2003

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003).
[CrossRef]

M. D. Feit and A. M. Rubenchik, "Mechanisms of CO2 laser mitigation of laser damage growth in fused silica," Proc. SPIE 4932, 91-102 (2003).
[CrossRef]

2002

1999

1987

Baker, H. J.

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villareal and D. R. Hall, "Localized CO2 laser damage repair of fused silica optics," Opt. Express 45, 5358-5367 (2006).

Bass, I.

G. Guss, I. Bass, R. Hackel, C. Mailhiot and S. Demos, "In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography," Appl. Opt. 47, 4569-4576 (2008).
[CrossRef] [PubMed]

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
[CrossRef]

Bass, I. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer and F. L. Ravizza, "Downstream intensification effects associated with CO2 laser mitigation of fused silica," Proc. SPIE 6720, A7200-A7200 (2008).

I. L. Bass, G. M. Guss and R. P. Hackel, "Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser," Proc. SPIE 5991, C9910-C9910 (2005).

Bercegol, H.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie and H. Bercegol, "Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam," Proc. SPIE 6403, 40323-40323 (2007).

L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
[CrossRef]

J. Neauport, L. Lamaignere, H. Bercegol, F. Pilon and J.-C. Birolleau, "Polishing-induced contamination of fused silica optics and laser induced damage density at 351 nm," Opt. Express 13, 10163-10171 (2005).
[CrossRef] [PubMed]

Bertussi, B.

Birolleau, J.-C.

Boley, C. D.

M. D. Feit, A. M. Rubenchik, C. D. Boley and M. Rotter, "Development of a process model for CO2 laser mitigation of damage growth in fused silica," Proc. SPIE 5273, 145-154 (2004).
[CrossRef]

Borden, M.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003).
[CrossRef]

Borowiec, A.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
[CrossRef]

Bouchut, P.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie and H. Bercegol, "Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam," Proc. SPIE 6403, 40323-40323 (2007).

Bouillet, S.

L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
[CrossRef]

Bruere, J.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003).
[CrossRef]

Brusasco, R. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler and L. W. Hrubes, "Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica," Proc. SPIE 4679, 40-47 (2002).
[CrossRef]

Burns, S. J.

Butler, J. A.

R. M. Brusasco, B. M. Penetrante, J. A. Butler and L. W. Hrubes, "Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica," Proc. SPIE 4679, 40-47 (2002).
[CrossRef]

Commandré, M.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

Cormont, P.

B. Bertussi, P. Cormont, S. Palmier, P. Legros and J.-L. Rullier, "Initiation of laser-induced damage sites in fused silica optical components," Opt. Express 17, 11469-11479 (2009).
[CrossRef] [PubMed]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

Courchinoux, R.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
[CrossRef]

Coutar, J. G.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie and H. Bercegol, "Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam," Proc. SPIE 6403, 40323-40323 (2007).

Dahmani, F.

Danilewsky, A. N.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
[CrossRef]

Demos, S.

Demos, S. G.

Donval, T.

L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
[CrossRef]

Draggoo, V.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
[CrossRef]

During, A.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie and H. Bercegol, "Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam," Proc. SPIE 6403, 40323-40323 (2007).

Feit, M. D.

M. D. Feit, A. M. Rubenchik, C. D. Boley and M. Rotter, "Development of a process model for CO2 laser mitigation of damage growth in fused silica," Proc. SPIE 5273, 145-154 (2004).
[CrossRef]

M. D. Feit and A. M. Rubenchik, "Mechanisms of CO2 laser mitigation of laser damage growth in fused silica," Proc. SPIE 4932, 91-102 (2003).
[CrossRef]

Fujimoto, J.

Gallais, L.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

Guss, G.

G. Guss, I. Bass, R. Hackel, C. Mailhiot and S. Demos, "In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography," Appl. Opt. 47, 4569-4576 (2008).
[CrossRef] [PubMed]

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
[CrossRef]

Guss, G. M.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer and F. L. Ravizza, "Downstream intensification effects associated with CO2 laser mitigation of fused silica," Proc. SPIE 6720, A7200-A7200 (2008).

I. L. Bass, G. M. Guss and R. P. Hackel, "Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser," Proc. SPIE 5991, C9910-C9910 (2005).

Hackel, R.

G. Guss, I. Bass, R. Hackel, C. Mailhiot and S. Demos, "In situ monitoring of surface post processing in large-aperture fused silica optics with optical coherent tomography," Appl. Opt. 47, 4569-4576 (2008).
[CrossRef] [PubMed]

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
[CrossRef]

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003).
[CrossRef]

Hackel, R. P.

I. L. Bass, G. M. Guss and R. P. Hackel, "Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser," Proc. SPIE 5991, C9910-C9910 (2005).

Hall, D. R.

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villareal and D. R. Hall, "Localized CO2 laser damage repair of fused silica optics," Opt. Express 45, 5358-5367 (2006).

Halpin, J.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003).
[CrossRef]

Hrubes, L. W.

R. M. Brusasco, B. M. Penetrante, J. A. Butler and L. W. Hrubes, "Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica," Proc. SPIE 4679, 40-47 (2002).
[CrossRef]

Josse, M.

L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
[CrossRef]

Kozlowski, M. R.

Lamaignere, L.

Lamaignère, L.

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
[CrossRef]

Lambropoulos, J.C.

Lancaster, M.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
[CrossRef]

Lankinen, A.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
[CrossRef]

Le Garrec, B.

S. Mainguy and B. Le Garrec, "Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects," J. de Phys. IV 133, 653-655 (2006).

Legros, P.

B. Bertussi, P. Cormont, S. Palmier, P. Legros and J.-L. Rullier, "Initiation of laser-induced damage sites in fused silica optical components," Opt. Express 17, 11469-11479 (2009).
[CrossRef] [PubMed]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

Leymarie, C.

A. During, P. Bouchut, J. G. Coutar, C. Leymarie and H. Bercegol, "Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam," Proc. SPIE 6403, 40323-40323 (2007).

Lowney, D.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
[CrossRef]

Mailhiot, C.

Mainguy, S.

S. Mainguy and B. Le Garrec, "Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects," J. de Phys. IV 133, 653-655 (2006).

Mak, P.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
[CrossRef]

Matthews, M. J.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer and F. L. Ravizza, "Downstream intensification effects associated with CO2 laser mitigation of fused silica," Proc. SPIE 6720, A7200-A7200 (2008).

McLachlan, A. D.

McNally, P. J.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
[CrossRef]

Mendez, E.

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villareal and D. R. Hall, "Localized CO2 laser damage repair of fused silica optics," Opt. Express 45, 5358-5367 (2006).

Meyer, F. P.

Minoshima, K.

Neauport, J.

Nowak, K.M.

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villareal and D. R. Hall, "Localized CO2 laser damage repair of fused silica optics," Opt. Express 45, 5358-5367 (2006).

Palmier, S.

B. Bertussi, P. Cormont, S. Palmier, P. Legros and J.-L. Rullier, "Initiation of laser-induced damage sites in fused silica optical components," Opt. Express 17, 11469-11479 (2009).
[CrossRef] [PubMed]

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

Papernov, S.

Payne, S.

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
[CrossRef]

Penetrante, B. M.

R. M. Brusasco, B. M. Penetrante, J. A. Butler and L. W. Hrubes, "Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica," Proc. SPIE 4679, 40-47 (2002).
[CrossRef]

Peterson, J.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003).
[CrossRef]

Pilon, F.

Poncetta, J.-C.

L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
[CrossRef]

Prasad, R.

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003).
[CrossRef]

Ravizza, F. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer and F. L. Ravizza, "Downstream intensification effects associated with CO2 laser mitigation of fused silica," Proc. SPIE 6720, A7200-A7200 (2008).

Rotter, M.

M. D. Feit, A. M. Rubenchik, C. D. Boley and M. Rotter, "Development of a process model for CO2 laser mitigation of damage growth in fused silica," Proc. SPIE 5273, 145-154 (2004).
[CrossRef]

Rubenchik, A. M.

M. D. Feit, A. M. Rubenchik, C. D. Boley and M. Rotter, "Development of a process model for CO2 laser mitigation of damage growth in fused silica," Proc. SPIE 5273, 145-154 (2004).
[CrossRef]

M. D. Feit and A. M. Rubenchik, "Mechanisms of CO2 laser mitigation of laser damage growth in fused silica," Proc. SPIE 4932, 91-102 (2003).
[CrossRef]

Rullier, J.-L.

Rullier, J-L

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

Schmid, A. W.

Staggs, M.

Stevens-Kalceff, M. A.

M. A. Stevens-Kalceff and J. Wong, "Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser," J. Appl. Phys. 97, 113519 (2005).
[CrossRef]

Tuomi, T. O.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
[CrossRef]

Villareal, F. J.

E. Mendez, K. M. Nowak, H. J. Baker, F. J. Villareal and D. R. Hall, "Localized CO2 laser damage repair of fused silica optics," Opt. Express 45, 5358-5367 (2006).

Widmayer, C. C

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer and F. L. Ravizza, "Downstream intensification effects associated with CO2 laser mitigation of fused silica," Proc. SPIE 6720, A7200-A7200 (2008).

Wong, J.

M. A. Stevens-Kalceff and J. Wong, "Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser," J. Appl. Phys. 97, 113519 (2005).
[CrossRef]

Xu, L.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
[CrossRef]

Appl. Opt.

Appl. Surface Science

S. Palmier, L. Gallais, M. Commandré, P. Cormont, R. Courchinoux, L. Lamaignère, J-L Rullier and P. Legros "Optimization of a laser mitigation process in damaged fused silica," Appl. Surface Science 255, 5532-5536 (2008).
[CrossRef]

J. Appl. Phys.

M. A. Stevens-Kalceff and J. Wong, "Distribution of defects induced in fused silica by ultraviolet laser pulses before and after treatment with a CO2 laser," J. Appl. Phys. 97, 113519 (2005).
[CrossRef]

J. de Phys. IV

S. Mainguy and B. Le Garrec, "Propagation of LIL/LMJ beams under the interaction with contamination particles and component surface defects," J. de Phys. IV 133, 653-655 (2006).

Opt. Express

Proc. SPIE

G. Guss, I. Bass, V. Draggoo, R. Hackel, S. Payne, M. Lancaster and P. Mak, "Mitigation of growth of laser initiated surface damage in fused silica using a 4.6 µm wavelength laser," Proc. SPIE 6403, 64030M (2007).
[CrossRef]

I. L. Bass, G. M. Guss and R. P. Hackel, "Mitigation of laser damage growth in fused silica with a galvanometer scanned CO2 laser," Proc. SPIE 5991, C9910-C9910 (2005).

A. During, P. Bouchut, J. G. Coutar, C. Leymarie and H. Bercegol, "Mitigation of laser damage on fused silica surfaces with a variable profile CO2 laser beam," Proc. SPIE 6403, 40323-40323 (2007).

R. M. Brusasco, B. M. Penetrante, J. A. Butler and L. W. Hrubes, "Localized CO2 laser treatment for mitigation of 351 nm damage growth on fused silica," Proc. SPIE 4679, 40-47 (2002).
[CrossRef]

R. Prasad, J. Bruere, J. Peterson, J. Halpin, M. Borden and R. Hackel, "Enhanced performance of large of optics using UV and IR lasers," Proc. SPIE 5273, 288-295 (2003).
[CrossRef]

M. D. Feit and A. M. Rubenchik, "Mechanisms of CO2 laser mitigation of laser damage growth in fused silica," Proc. SPIE 4932, 91-102 (2003).
[CrossRef]

M. D. Feit, A. M. Rubenchik, C. D. Boley and M. Rotter, "Development of a process model for CO2 laser mitigation of damage growth in fused silica," Proc. SPIE 5273, 145-154 (2004).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C Widmayer and F. L. Ravizza, "Downstream intensification effects associated with CO2 laser mitigation of fused silica," Proc. SPIE 6720, A7200-A7200 (2008).

Rev. Scientific Instruments

L. Lamaignère,S. Bouillet, R. Courchinoux, T. Donval, M. Josse, J.-C. Poncetta, and H. Bercegol, "An accurate, repeatable, and well characterized measurement of laser damage density of optical materials," Rev. Scientific Instruments 78, 103105 (2007).
[CrossRef]

Semicond. Sci. Technol.

L. Xu, D. Lowney, P. J. McNally, A. Borowiec, A. Lankinen, T. O. Tuomi and A. N. Danilewsky, "Femtosecond versus nanosecond laser micro-machining of InP: a nondestructive three-dimensional analysis of strain," Semicond. Sci. Technol. 22, 970-979 (2007).
[CrossRef]

Other

http://optics.heraeus-quarzglas.com

http://www.comsol.com/

J. Zarzyski, "Les verres et l'état vitreux", Masson (1982).

S. Huard, Polarization of light, (John Wiley and Sons, 1997).

Y. S. Touloukian, "Thermo-physical propoerties of matter vol.3 - Thermal conductivity of liquids and gases," IFI/Plenum, 1970.

M. Von Allmen, Laser-beam interactions with material, (Spinger-Verlag, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

Observation by Nomarski microscopy of mitigated sites after the laser damage test procedure. a- after one shot at 11J/cm2, b- after 10 shots at 11J/cm2. The red circle is plotted to evidence the circular symmetry of the damage appearance.

Fig. 2.
Fig. 2.

Relation between the “damage initiation diameter” and the crater diameter.

Fig. 3.
Fig. 3.

Polariscope developed for the observation of mitigated sites. W: White light collimated source, P/A: high contrast polarizer and analyzer (10000:1); S: silica sample; C: Camera (12.5 million-pixel, 12-bits, cooled color camera), O: long working distance objective (X10).

Fig. 4.
Fig. 4.

Observation of a mitigated site, with parameters of the case 4, by Nomarski microscopy (a) and with the polariscope (b).

Fig. 5.
Fig. 5.

a.The principal directions of the stress around the mitigated site, which are either parallel or orthogonal to the radius. b. Schematic representation of the resulting polarization state at the output of a mitigated site for incident light linearly polarized in the vertical direction.

Fig. 6.
Fig. 6.

Relation between the “maximum retardance diameter” and the crater diameter.

Fig. 7.
Fig. 7.

Observation of two craters with the polariscope. The damages are indicated with the red arrows. Notice that the polarizers were not perfectly orthogonal in order to image simultaneously the sample surface and the stress field.

Fig. 8.
Fig. 8.

Experimental setup for measuring birefringence with a Soleil-Babinet compensator (SBC). He-Ne: 0.5mW Helium-Neon Laser; P/A: high contrast polarizer and analyzer (10000:1); λ/2: half wave plate; L1: microscope objective (X20); S: silica sample; L2: microscope objective (X10).

Fig. 9.
Fig. 9.

Relation between the maximum retardance measured and the crater depth for the 6 cases under study.

Fig. 10.
Fig. 10.

Geometry used in the model

Fig. 11.
Fig. 11.

Calculated temperature distribution in fused silica at the end of the CO2 laser irradiation for parameters of the case 3. The crater is delimited by the white line.

Fig. 12.
Fig. 12.

Calculated hoop (a) and radial (b) stresses in fused silica at the end of the CO2 laser irradiation for the parameters of the case 3. The crater is delimited by the white line.

Fig. 13.
Fig. 13.

Description of the index ellipsoïd as used in our calculation.

Fig. 14.
Fig. 14.

Theoretical retardance for the case 3. The crater diameter is delimited by the dashed line.

Fig. 15.
Fig. 15.

Calculated strain repartition in fused silica at the end of the CO2 laser irradiation for parameters of the three cases with a pulse length of 250 ms. Radial strains are represented on the upper part (a), and hoop at the lower (b). Craters sizes and positions of each maximum of retardance are indicated with a full and dashed white line respectively.

Tables (1)

Tables Icon

Table 1. Details of the different irradiation conditions and dimensional characteristics of the CO2-craters studied. The crater dimensions are measured with an optical profiler.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Q = α ( 1 R ) p π a 2 exp r 2 a 2 exp ( α z )
ρ C T t + . ( k T ) = Q
ε r = u r ; ε ϕ = u r ; ε z = w z ; γ rz = u z + w r
σ ij = D ijkl ε kl
1 n ij 2 = [ 1 n ij 2 ] [ σ ] = 0 + Δ 1 n ij 2
Δ 1 n ij 2 = p ijmn ε mn
n x = n 0 1 2 n 0 3 [ p 11 ε x + p 12 ( ε y + ε z ) ]
n y = n 0 1 2 n 0 3 [ p 11 ε y + p 12 ( ε x + ε z ) ]
B = n x n y = 1 2 n 0 3 [ p 11 ( ε x ε y ) + p 12 ( ε y ε x ) ]
Γ = 0 e B ( z ) d z

Metrics