Abstract

Several 7 cell core hollow-core photonic crystal fibers with bandgaps in the spectral range of 1.4 μm to 2.3 μm have been fabricated. The transmission loss follows the ≈ λ−3 dependency previously reported, with a minimum measured loss of 9.5 dB/km at 1.99 μm. One fiber with a transmission loss of 26 dB/km at 2.3 μm is reported, which is significantly lower than the transmission loss of solid silica fibers at this wavelength.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236 (2005).
    [CrossRef] [PubMed]
  2. Jas S. Sanghera, L. Brandon Shaw, and Ishwar D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).
    [CrossRef]
  3. J. Shephard, W. Macpherson, R. Maier, J. Jones, D. Hand, M. Mohebbi, A. George, P. Roberts, and J. Knight, “Single-mode mid-IR guidance in a hollow-core photonic crystal fiber,” Opt. Express 13(18), 7139–7144 (2005).
    [CrossRef] [PubMed]
  4. K. Saitoh and M. Koshiba, “Leakage loss and group velocity dispersion in air-core photonic bandgap fibers,” Opt. Express 11(23), 3100–3109 (2003).
    [CrossRef] [PubMed]
  5. J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, and A. Tünnermann, “All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber,” Opt. Express 11(24), 3332–3337 (2003).
    [CrossRef] [PubMed]
  6. V. N. Kumar and D. N. Rao, “Using interference in the frequency domain for precise determination of thickness and refractive indices of normal dispersive materials,” J. Opt. Soc. Am. B 12(9), 1559–1563 (1995).
    [CrossRef]
  7. S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
    [CrossRef]
  8. D. Michel, V. B. Kazansky, and V. M. Andreev, “Study of the interaction between surface hydroxyls and adsorbed water molecules on porous glasses by means of infrared spectroscopy,” Surf. Sci. 72, 324–356 (1972).
  9. J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
    [CrossRef]
  10. P. S. Light, F. Couny, Y. Y. Wang, N. V. Wheeler, P. J. Roberts, and F. Benabid, “Double photonic bandgap hollow-core photonic crystal fiber,” Opt. Express 17(18), 16238–16243 (2009).
    [CrossRef] [PubMed]
  11. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
    [CrossRef] [PubMed]
  12. B. Mangan, J. K. Lyngsø, and P. J. Roberts, “Realization of Low Loss and Polarization Maintaining Hollow Core Photonic Crystal Fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JFG4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-JFG4
  13. P. J. Roberts, D. P. Williams, H. Sabert, B. J. Mangan, D. M. Bird, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Design of low-loss and highly birefringent hollow-core photonic crystal fiber,” Opt. Express 14(16), 7329–7341 (2006).
    [CrossRef] [PubMed]

2009 (1)

2006 (1)

2005 (2)

2003 (3)

2002 (1)

Jas S. Sanghera, L. Brandon Shaw, and Ishwar D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).
[CrossRef]

1995 (1)

1982 (2)

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[CrossRef]

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[CrossRef]

1972 (1)

D. Michel, V. B. Kazansky, and V. M. Andreev, “Study of the interaction between surface hydroxyls and adsorbed water molecules on porous glasses by means of infrared spectroscopy,” Surf. Sci. 72, 324–356 (1972).

Aggarwal, Ishwar D.

Jas S. Sanghera, L. Brandon Shaw, and Ishwar D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).
[CrossRef]

Allan, D. C.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Andreev, V. M.

D. Michel, V. B. Kazansky, and V. M. Andreev, “Study of the interaction between surface hydroxyls and adsorbed water molecules on porous glasses by means of infrared spectroscopy,” Surf. Sci. 72, 324–356 (1972).

Benabid, F.

Bird, D. M.

Birks, T. A.

Borrelli, N. F.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Couny, F.

Farr, L.

Gallagher, M. T.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

George, A.

Hand, D.

Jones, J.

Kazansky, V. B.

D. Michel, V. B. Kazansky, and V. M. Andreev, “Study of the interaction between surface hydroxyls and adsorbed water molecules on porous glasses by means of infrared spectroscopy,” Surf. Sci. 72, 324–356 (1972).

Knight, J.

Knight, J. C.

Koch, K. W.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Koshiba, M.

Kumar, V. N.

Light, P. S.

Limpert, J.

MacChesney, J. B.

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[CrossRef]

Macpherson, W.

Maier, R.

Mangan, B. J.

Mason, M. W.

Michel, D.

D. Michel, V. B. Kazansky, and V. M. Andreev, “Study of the interaction between surface hydroxyls and adsorbed water molecules on porous glasses by means of infrared spectroscopy,” Surf. Sci. 72, 324–356 (1972).

Mohebbi, M.

Müller, D.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Nagel, S. R.

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[CrossRef]

Nolte, S.

Rao, D. N.

Roberts, P.

Roberts, P. J.

Russell, P. St. J.

Sabert, H.

Saitoh, K.

Sanghera, Jas S.

Jas S. Sanghera, L. Brandon Shaw, and Ishwar D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).
[CrossRef]

Schreiber, T.

Shaw, L. Brandon

Jas S. Sanghera, L. Brandon Shaw, and Ishwar D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).
[CrossRef]

Shephard, J.

Smith, C. M.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

St. J. Russell, P.

Stone, J.

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[CrossRef]

Tomlinson, A.

Tünnermann, A.

Venkataraman, N.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Walker, K. L.

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[CrossRef]

Walrafen, G. E.

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[CrossRef]

Wang, Y. Y.

West, J. A.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Wheeler, N. V.

Williams, D. P.

Zellmer, H.

C. R. Chim. (1)

Jas S. Sanghera, L. Brandon Shaw, and Ishwar D. Aggarwal, “Applications of chalcogenide glass optical fibers,” C. R. Chim. 5, 873–883 (2002).
[CrossRef]

IEEE J. Quantum Electron. (1)

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An Overview of the Modified Chemical Vapor Deposition (MCVD) Process and Performance,” IEEE J. Quantum Electron. 18(4), 459–476 (1982).
[CrossRef]

J. Chem. Phys. (1)

J. Stone and G. E. Walrafen, “Overtone vibrations of OH groups in fused silica optical fibers,” J. Chem. Phys. 76(4), 1712–1722 (1982).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nature (1)

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003).
[CrossRef] [PubMed]

Opt. Express (6)

Surf. Sci. (1)

D. Michel, V. B. Kazansky, and V. M. Andreev, “Study of the interaction between surface hydroxyls and adsorbed water molecules on porous glasses by means of infrared spectroscopy,” Surf. Sci. 72, 324–356 (1972).

Other (1)

B. Mangan, J. K. Lyngsø, and P. J. Roberts, “Realization of Low Loss and Polarization Maintaining Hollow Core Photonic Crystal Fibers,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest (CD) (Optical Society of America, 2008), paper JFG4. http://www.opticsinfobase.org/abstract.cfm?URI=CLEO-2008-JFG4

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM images of the fiber designs used in this study. (a) The end face of a standard 7-cell core HC-PCF (Fibers A-E). All the fibers A,B,C,D and E have very similar geometry and vary only in scale. (b) The end face of a 7-cell core HC-PCF with six antiresonant features on the core wall (Fiber F).

Fig. 2
Fig. 2

(a) Measured minimum loss of fibers A-E, together with surface scattering loss (dashed grey), infrared absorption based on ƒa = 0.98 (dashed red) and expected overall loss (dashed black). The solid grey line is the loss of a conventional solid single mode fiber. (b) Fundamental mode loss as function of wavelength for fiber D (black) and group velocity dispersion (grey).

Fig. 3
Fig. 3

(a) Ro-vibrational spectrum originating from CO2 present inside the fiber. Signal corresponds to transmission through 200 m. fiber. (b) The P branch of the ro-vibrational spectrum originating from HCl present inside the fiber. Signal corresponds to transmission through 400 m. fiber.

Fig. 4
Fig. 4

(a) Photonic density of states for a typical HC-PCF cladding with a 91% air filling fraction. Black regions correspond to no cladding states being allowed. (b) Measured loss of the first higher order bandgap of fiber E.

Fig. 5
Fig. 5

(a) Measured loss for 7-cell core HC-PCFs with antiresonant features on the core wall, together with surface scattering loss (dashed grey), infrared absorption based on ƒa = 0.99 (dashed red) and expected overall loss (dashed black). (b) Fundamental mode loss as function of wavelength for fiber F. There was a defect in the cladding structure near the core.

Tables (1)

Tables Icon

Table 1 Physical fiber dimensions

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α t S 0 ( f a ) λ 3 + A exp ( a i r / λ ) ( 1 f a )

Metrics