Abstract

We present a study of the first silicon microdisk resonators which are smaller than the free-space resonant wavelength in all spatial dimensions. Spectral details of whispering gallery modes with azimuthal mode number m = 4-7 are measured in microdisks with diameters between 1.35 and 1.89μm and are studied at wavelengths from 1.52 to 1.62μm. For the structures considered here, m = 5 is the highest azimuthal mode order in a subwavelength cavity and has measured Q = 1250. These results agree well with theoretical calculations using a finite difference frequency domain method and fit an exponential scaling law relating Q to disk radius via m.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
    [CrossRef]
  2. A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28(11), 1010–1012 (1992).
    [CrossRef]
  3. A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
    [CrossRef]
  4. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
    [CrossRef]
  5. Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
    [CrossRef]
  6. C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008).
    [CrossRef]
  7. Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
    [CrossRef] [PubMed]
  8. K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high- Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
    [CrossRef]
  9. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
    [CrossRef] [PubMed]
  10. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
    [CrossRef]
  11. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  12. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
    [CrossRef] [PubMed]
  13. K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).
  14. J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007).
    [CrossRef] [PubMed]
  15. Amnon Yariv, Quantum Electronics (John Wiley and Sons, 1989), Chap. 22.
  16. Jens Uwe Nöckel, “Resonances in nonintegrable open systems,” Ph.D. thesis (Yale University, 1997) pp 91–105.
  17. R. P. Wang and M.-M. Dumitrescu, “Optical modes in semiconductor microdisk lasers,” IEEE J. Quantum Electron. 34(10), 1933–1937 (1998).
    [CrossRef]
  18. N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644 (1996).
    [CrossRef]
  19. P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
    [CrossRef]
  20. R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
    [CrossRef]
  21. H. Benisty, J.-M. Gerard, R. Houdre, J. Rarity, and C. Weisbuch, eds., Confined Photon Systems (Springer, New York, 1998).
  22. B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
    [CrossRef] [PubMed]
  23. A. C. F. Hoole, M. E. Welland, and A. N. Broers, “Negative PMMA as a high-resolution resist—the limits and possibilities,” Semicond. Sci. Technol. 12(9), 1166–1170 (1997).
    [CrossRef]
  24. L. Deych, and J. Rubin, “Rayleigh scattering of whispering gallery modes of microspheres due to a single scatterer: myths and reality.” arXiv:0812.4404v1 [physics.optics] 23 Dec 2008.

2009

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

2008

C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008).
[CrossRef]

Q. Xu, D. Fattal, and R. G. Beausoleil, “Silicon microring resonators with 1.5-microm radius,” Opt. Express 16(6), 4309–4315 (2008).
[CrossRef] [PubMed]

2007

J. E. Heebner, T. C. Bond, and J. S. Kallman, “Generalized formulation for performance degradations due to bending and edge scattering loss in microdisk resonators,” Opt. Express 15(8), 4452–4473 (2007).
[CrossRef] [PubMed]

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

2006

2005

2004

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high- Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

1998

R. P. Wang and M.-M. Dumitrescu, “Optical modes in semiconductor microdisk lasers,” IEEE J. Quantum Electron. 34(10), 1933–1937 (1998).
[CrossRef]

1997

A. C. F. Hoole, M. E. Welland, and A. N. Broers, “Negative PMMA as a high-resolution resist—the limits and possibilities,” Semicond. Sci. Technol. 12(9), 1166–1170 (1997).
[CrossRef]

1996

N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644 (1996).
[CrossRef]

1994

P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

1993

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

1992

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28(11), 1010–1012 (1992).
[CrossRef]

Barclay, P. E.

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high- Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

Beausoleil, R. G.

Bond, T. C.

Borselli, M.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high- Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[CrossRef]

Broers, A. N.

A. C. F. Hoole, M. E. Welland, and A. N. Broers, “Negative PMMA as a high-resolution resist—the limits and possibilities,” Semicond. Sci. Technol. 12(9), 1166–1170 (1997).
[CrossRef]

Brongersma, M. L.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[CrossRef]

Camacho, R.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Cao, H.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Chan, J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Coblentz, D. L.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28(11), 1010–1012 (1992).
[CrossRef]

de Vries, T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

de Waardt, H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Dumitrescu, M.-M.

R. P. Wang and M.-M. Dumitrescu, “Optical modes in semiconductor microdisk lasers,” IEEE J. Quantum Electron. 34(10), 1933–1937 (1998).
[CrossRef]

Eichenfield, M.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Eijkemans, T. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Fattal, D.

Frateschi, N. C.

N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644 (1996).
[CrossRef]

Geluk, E. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Heebner, J. E.

Hill, M. T.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Ho, S. T.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Hoole, A. C. F.

A. C. F. Hoole, M. E. Welland, and A. N. Broers, “Negative PMMA as a high-resolution resist—the limits and possibilities,” Semicond. Sci. Technol. 12(9), 1166–1170 (1997).
[CrossRef]

Johnson, T. J.

Kallman, J. S.

Krishna, S.

Kwon, S.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Lee, Y.-H.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Levi, A. F. J.

N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644 (1996).
[CrossRef]

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28(11), 1010–1012 (1992).
[CrossRef]

Logan, R. A.

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Lusse, P.

P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Manolatou, C.

C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008).
[CrossRef]

McCall, S. L.

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28(11), 1010–1012 (1992).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Min, B.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Nötzel, R.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Oei, Y.-S.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Ostby, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Painter, O.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
[CrossRef] [PubMed]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high- Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[CrossRef]

Pearton, S. J.

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28(11), 1010–1012 (1992).
[CrossRef]

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Rana, F.

C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008).
[CrossRef]

Schule, J.

P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Selker, M. D.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[CrossRef]

Slusher, R. E.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28(11), 1010–1012 (1992).
[CrossRef]

Smalbrugge, B.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Smit, M. K.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Solomon, G. S.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Song, Q.

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

Sorger, V.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
[CrossRef] [PubMed]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high- Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[CrossRef]

Stintz, A.

Stuwe, P.

P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Tanbun-Ek, T.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28(11), 1010–1012 (1992).
[CrossRef]

Turkiewicz, J. P.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Ulin-Avila, E.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Unger, H.-G.

P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Vahala, K.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Vahala, K. J.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

van Otten, F. W. M.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

van Veldhoven, P. J.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Wang, R. P.

R. P. Wang and M.-M. Dumitrescu, “Optical modes in semiconductor microdisk lasers,” IEEE J. Quantum Electron. 34(10), 1933–1937 (1998).
[CrossRef]

Welland, M. E.

A. C. F. Hoole, M. E. Welland, and A. N. Broers, “Negative PMMA as a high-resolution resist—the limits and possibilities,” Semicond. Sci. Technol. 12(9), 1166–1170 (1997).
[CrossRef]

Xu, Q.

Yang, L.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Zhang, X.

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

Zhu, Y.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Zia, R.

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[CrossRef]

Appl. Phys. Lett.

S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, “Whispering-gallery mode microdisk lasers,” Appl. Phys. Lett. 60(3), 289–291 (1992).
[CrossRef]

Q. Song, H. Cao, S. T. Ho, and G. S. Solomon, “Near-IR subwavelength microdisk lasers,” Appl. Phys. Lett. 94(6), 061109 (2009).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling and optical loss in silicon microdisks,” Appl. Phys. Lett. 85(17), 3693–3695 (2004).
[CrossRef]

Electron. Lett.

A. F. J. Levi, R. E. Slusher, S. L. McCall, T. Tanbun-Ek, D. L. Coblentz, and S. J. Pearton, “Room temperature operation of microdisc lasers with submilliamp threshold current,” Electron. Lett. 28(11), 1010–1012 (1992).
[CrossRef]

A. F. J. Levi, S. L. McCall, S. J. Pearton, and R. A. Logan, “Room temperature operation of submicrometre radius disk laser,” Electron. Lett. 29(18), 1666–1667 (1993).
[CrossRef]

IEEE J. Quantum Electron.

C. Manolatou and F. Rana, “Subwavelength nanopatch cavities for semiconductor plasmon lasers,” IEEE J. Quantum Electron. 44(5), 435–447 (2008).
[CrossRef]

R. P. Wang and M.-M. Dumitrescu, “Optical modes in semiconductor microdisk lasers,” IEEE J. Quantum Electron. 34(10), 1933–1937 (1998).
[CrossRef]

J. Appl. Phys.

N. C. Frateschi and A. F. J. Levi, “The spectrum of microdisk lasers,” J. Appl. Phys. 80(2), 644 (1996).
[CrossRef]

J. Lightwave Technol.

P. Lusse, P. Stuwe, J. Schule, and H.-G. Unger, “Analysis of vectorial mode fields in optical waveguides by a new finite difference method,” J. Lightwave Technol. 12(3), 487–494 (1994).
[CrossRef]

Nat. Photonics

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007).
[CrossRef]

Nature

B. Min, E. Ostby, V. Sorger, E. Ulin-Avila, L. Yang, X. Zhang, and K. Vahala, “High-Q surface-plasmon-polariton whispering-gallery microcavity,” Nature 457(7228), 455–458 (2009).
[CrossRef] [PubMed]

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. B

R. Zia, M. D. Selker, and M. L. Brongersma, “Leaky and bound modes of surface plasmon waveguides,” Phys. Rev. B 71(16), 165431 (2005).
[CrossRef]

K. Srinivasan, P. E. Barclay, M. Borselli, and O. Painter, “Optical-fiber-based measurement of an ultrasmall volume high- Q photonic crystal microcavity,” Phys. Rev. B 70(8), 081306 (2004).
[CrossRef]

Semicond. Sci. Technol.

A. C. F. Hoole, M. E. Welland, and A. N. Broers, “Negative PMMA as a high-resolution resist—the limits and possibilities,” Semicond. Sci. Technol. 12(9), 1166–1170 (1997).
[CrossRef]

Other

L. Deych, and J. Rubin, “Rayleigh scattering of whispering gallery modes of microspheres due to a single scatterer: myths and reality.” arXiv:0812.4404v1 [physics.optics] 23 Dec 2008.

K. Zhang, and D. Li, Electromagnetic Theory for Microwaves and Optoelectronics (Springer, 1998).

H. Benisty, J.-M. Gerard, R. Houdre, J. Rarity, and C. Weisbuch, eds., Confined Photon Systems (Springer, New York, 1998).

Amnon Yariv, Quantum Electronics (John Wiley and Sons, 1989), Chap. 22.

Jens Uwe Nöckel, “Resonances in nonintegrable open systems,” Ph.D. thesis (Yale University, 1997) pp 91–105.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Fabricated structures and calculated field profiles of microdisks for m = 7 and m = 4 modes. a) Disk of 1.89μm diameter. b) Re(Hz ) field profile of m = 7 mode in the y-z plane calculated with the FDFD method. Q = 18,200. c) Far field (log10(|Re(Hz )|)) for the same disk. d) Re(Hz ) in the x-y plane calculated analytically. e) Disk of 1.35μm diameter. f-h) Calculations for the 1.35μm disk corresponding to those in b-d.

Fig. 2
Fig. 2

Silicon microdisks of decreasing diameters and tapered fiber spectra. a-e) SEM images of disks of diameter 10μm, 5μm, 1.75μm, 1.48μm and 1.35μm respectively. Resonant transmission dips in tapered fiber spectra acquired from the disks are shown. The y-axes of these plots are transmission in arbitrary units and the x-axis is wavelength detuning. f) High resolution tapered fiber spectrum of a 10μm disk. g) Scan of the full tunable laser range for the 10μm disk. h) Scan of the full tunable laser range for the m = 4 mode.

Fig. 3
Fig. 3

Microdisk Q versus m. a) Experimental data, theoretical values obtained with FDFD and a fit to an exponential function are shown. The linear relationship between the disk radius, r 0, and m is shown in the inset. b) The effective potential and tunneling parameters.

Tables (1)

Tables Icon

Table 1 Theoretical and measured microdisk modal parameters

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

n 2 n ¯ 2 tan ( k 0 d 2 n 2 n ¯ 2 ) = ξ n ¯ 2 1
1 r d d r r d d r R ( r ) + V eff ( r ) R ( r ) = k 0 2 R ( r ) ,
V eff ( r ) = k 0 2 [ 1 n ¯ 2 ( r ) ] + m 2 r 2 .
υ eff = ϵ ( r ) | E ( r ) | 2 d 3 r max [ ϵ ( r ) | E ( r ) | 2 ] .
Q meas 1 = Q rad 1 + Q c 1 + Q p 1 ,
1 Q ( m ) T ( m ) exp [ κ d T ( m ) ] exp ( κ m ) ,

Metrics