Abstract

In this paper the application of Wavelength Modulation (WM) techniques to non-resonant saturation spectroscopy in acetylene-filled Hollow-Core Photonic Bandgap Fibres (HC-PBFs) and modulation-free Laser Diode (LD) frequency stabilisation is investigated. In the first part WM techniques are applied to non-resonant pump-probe saturation of acetylene overtone rotational transitions in a HC-PBF. A high-power DFB chip-on-carrier mounted LD is used in conjunction with a tuneable External Cavity Laser (ECL) and the main saturation parameters are characterized. In the second part a novel feedback system to stabilize the DFB emission wavelength based on the WM saturation results is implemented. Modulation-free locking of the DFB laser frequency to the narrow linewidth saturation feature is achieved for both constant and variable LD temperatures.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  2. P. S. J. Russell, ““Photonic-Crystal Fibers,” Lightwave Technology,” Journalism 24, 4729–4749 (2006).
  3. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
    [CrossRef]
  4. J. B. Jensen, J. Riishede, J. Broengx, J. Laegsgaard, T. Tanggaard Larsen, T. Sorensen, K. Hougaard, E. Knudsen, S. B. Libori, and A. Bjarklev, “Photonic crystal fibers; fundamental properties and applications within sensors,” in Sensors, 2003. Proceedings of IEEE(2003), pp. 269–278 Vol.261.
  5. T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
    [CrossRef] [PubMed]
  6. T. Ritari, H. Ludvigsen, and J. C. Petersen, “Photonic Bandgap Fibers in Gas Detection,” Spectroscopy 20, 30–34 (2005).
  7. A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16(6), 3976–3985 (2008).
    [CrossRef] [PubMed]
  8. J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
    [CrossRef] [PubMed]
  9. F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
    [CrossRef] [PubMed]
  10. J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Opt. Commun. 255(4-6), 272–277 (2005).
    [CrossRef]
  11. F. Couny, P. S. Light, F. Benabid, and P. S. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263(1), 28–31 (2006).
    [CrossRef]
  12. J. C. Petersen, and J. Hald, “Frequency and wavelength standards based on gas filled HC-PBFs,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on(2008), pp. 1–2.
  13. K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5 um bands of acetylene,” J. Opt. Soc. Am. B 13(12), 2708–2714 (1996).
    [CrossRef]
  14. P. Minutolo, C. Corsi, F. D’Amato, and M. De Rosa, “Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 um,” Eur. Phys. J. D 17(2), 175–179 (2001).
    [CrossRef]
  15. C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005).
    [CrossRef]
  16. F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
    [CrossRef] [PubMed]
  17. S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
    [CrossRef] [PubMed]
  18. K. Knabe, R. Thapa, O. L. Weaver, B. R. Washburn, and K. L. Corwin, “Comparison of Saturated Absorption Spectra of Acetylene Gas Inside Photonic Bandgap Fibers,” in Tech. Digest, Symposium on Optical Fiber Measurements (SOFM 2006), Sep19–20,2006 (NIST Special Publication 1055, Boulder, CO, 2006), pp. 55–58.
  19. R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31(16), 2489–2491 (2006).
    [CrossRef] [PubMed]
  20. M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 1.5 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
    [CrossRef] [PubMed]
  21. A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
    [CrossRef]
  22. J. E. Debs, N. P. Robins, A. Lance, M. B. Kruger, and J. D. Close, “Piezo-locking a diode laser with saturated absorption spectroscopy,” Appl. Opt. 47(28), 5163–5166 (2008).
    [CrossRef] [PubMed]
  23. C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203(1-2), 133–137 (2002).
    [CrossRef]
  24. P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
    [CrossRef] [PubMed]
  25. P. Balling, and P. Křen, “Development of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” in WDS'05 Proceedings of Contributed Papers: Part III - Physics, J. Šafránková, ed. (Matfyz press, Charles University, Prague, 2005), pp. 590–594.
  26. K. Nakagawa, Y. Sato, M. Musha, and K. Ueda, “Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy,” Appl. Phys. B 80(4-5), 479–482 (2005).
    [CrossRef]
  27. M. J. Andrew, and K. Kevin, L. JinKang, T. Rajesh, T. Karl, C. Francois, S. L. Philip, B. Fetah, R. W. Brian, and L. C. Kristan, “Stability of Optical Frequency References Based on Acetylene-Filled Kagome-Structured Hollow Core Fiber,” in Frontiers in Optics(Optical Society of America, 2008), p. FWF7.
  28. K. Knabe, A. Jones, K. L. Corwin, F. Couny, P. S. Light, and F. Benabid, “Saturated absorption spectroscopy of C2H2 inside a hollow, large-core kagome photonic crystal fiber,” (Institute of Electrical and Electronics Engineers Inc., San Jose, CA, United states, 2008).
  29. J. M. Supplee, E. A. Whittaker, and W. Lenth, “Theoretical description of frequency modulation and wavelength modulation spectroscopy,” Appl. Opt. 33(27), 6294–6302 (1994).
    [CrossRef] [PubMed]
  30. NKT photonics, “HC-1550-02 fibre datasheet,” http://www.nktphotonics.com/side5334.html .
  31. C. N. Banwell, and E. M. McCash, “Chapter 3: Infra-Red Spectroscopy,” in Fundamentals of Molecular Spectroscopy (McGraw-Hill, 1994).
  32. O. Svelto, Principles of Lasers 4th Ed., Ch. 2, pp. 44–45 (Springer, 1998).
  33. K. Shimoda, High-Resolution Laser Spectroscopy, Ch.2, pp. 12–14 (Springer-Verlag, 1976).
  34. J. Elijah Kannatey-Asibu, “Broadening mechanisms,” in Principles of Laser Materials Processing, J. W. Sons, ed. (2009), pp. 90–92.
  35. P. F. Bernath, “Transit time broadening,” in Spectra of atoms and molecules, O. U. P. USA, ed. (2005), pp. 31–33.
  36. J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902–213904 (2007).
    [CrossRef] [PubMed]
  37. T. O. P. T. I. C. A. Photonics, “Diode Laser Locking and Linewidth Narrowing,” http://www.toptica.com/products/itemlayer/177/Appl_1012_laser_locking_080917.pdf .

2009 (1)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

2008 (2)

2007 (1)

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902–213904 (2007).
[CrossRef] [PubMed]

2006 (3)

P. S. J. Russell, ““Photonic-Crystal Fibers,” Lightwave Technology,” Journalism 24, 4729–4749 (2006).

F. Couny, P. S. Light, F. Benabid, and P. S. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263(1), 28–31 (2006).
[CrossRef]

R. Thapa, K. Knabe, M. Faheem, A. Naweed, O. L. Weaver, and K. L. Corwin, “Saturated absorption spectroscopy of acetylene gas inside large-core photonic bandgap fiber,” Opt. Lett. 31(16), 2489–2491 (2006).
[CrossRef] [PubMed]

2005 (9)

T. Ritari, H. Ludvigsen, and J. C. Petersen, “Photonic Bandgap Fibers in Gas Detection,” Spectroscopy 20, 30–34 (2005).

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Opt. Commun. 255(4-6), 272–277 (2005).
[CrossRef]

K. Nakagawa, Y. Sato, M. Musha, and K. Ueda, “Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy,” Appl. Phys. B 80(4-5), 479–482 (2005).
[CrossRef]

F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
[CrossRef] [PubMed]

P. Balling, M. Fischer, P. Kubina, and R. Holzwarth, “Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser,” Opt. Express 13(23), 9196–9201 (2005).
[CrossRef] [PubMed]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

2002 (1)

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203(1-2), 133–137 (2002).
[CrossRef]

2001 (1)

P. Minutolo, C. Corsi, F. D’Amato, and M. De Rosa, “Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 um,” Eur. Phys. J. D 17(2), 175–179 (2001).
[CrossRef]

1999 (1)

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

Awaji, Y.

Balling, P.

Barwood, G. P.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Benabid, F.

F. Couny, P. S. Light, F. Benabid, and P. S. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263(1), 28–31 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
[CrossRef] [PubMed]

Birks, T. A.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Busch, H. C.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203(1-2), 133–137 (2002).
[CrossRef]

Close, J. D.

Corsi, C.

P. Minutolo, C. Corsi, F. D’Amato, and M. De Rosa, “Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 um,” Eur. Phys. J. D 17(2), 175–179 (2001).
[CrossRef]

Corwin, K. L.

Couny, F.

F. Couny, P. S. Light, F. Benabid, and P. S. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263(1), 28–31 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

F. Benabid, P. Light, F. Couny, and P. Russell, “Electromagnetically-induced transparency grid in acetylene-filled hollow-core PCF,” Opt. Express 13(15), 5694–5703 (2005).
[CrossRef] [PubMed]

Cubillas, A. M.

D’Amato, F.

P. Minutolo, C. Corsi, F. D’Amato, and M. De Rosa, “Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 um,” Eur. Phys. J. D 17(2), 175–179 (2001).
[CrossRef]

de Labachelerie, M.

De Rosa, M.

P. Minutolo, C. Corsi, F. D’Amato, and M. De Rosa, “Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 um,” Eur. Phys. J. D 17(2), 175–179 (2001).
[CrossRef]

Debs, J. E.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Edwards, C. S.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Faheem, M.

Fischer, M.

Gaeta, A. L.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

Ghosh, S.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

Gill, P.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Hald, J.

Hansen, T.

Henningsen, J.

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902–213904 (2007).
[CrossRef] [PubMed]

J. Henningsen, J. Hald, and J. C. Peterson, “Saturated absorption in acetylene and hydrogen cyanide in hollow-core photonic bandgap fibers,” Opt. Express 13(26), 10475–10482 (2005).
[CrossRef] [PubMed]

Holzwarth, R.

Imai, K.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

Knabe, K.

Knight, J. C.

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Kourogi, M.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5 um bands of acetylene,” J. Opt. Soc. Am. B 13(12), 2708–2714 (1996).
[CrossRef]

Kruger, M. B.

Kubina, P.

Labachelerie, M.

Lance, A.

Lea, S. N.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Lenth, W.

Light, P.

Light, P. S.

F. Couny, P. S. Light, F. Benabid, and P. S. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263(1), 28–31 (2006).
[CrossRef]

Ludvigsen, H.

T. Ritari, H. Ludvigsen, and J. C. Petersen, “Photonic Bandgap Fibers in Gas Detection,” Spectroscopy 20, 30–34 (2005).

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Opt. Commun. 255(4-6), 272–277 (2005).
[CrossRef]

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
[CrossRef] [PubMed]

Margolis, H. S.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Minutolo, P.

P. Minutolo, C. Corsi, F. D’Amato, and M. De Rosa, “Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 um,” Eur. Phys. J. D 17(2), 175–179 (2001).
[CrossRef]

Musha, M.

K. Nakagawa, Y. Sato, M. Musha, and K. Ueda, “Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy,” Appl. Phys. B 80(4-5), 479–482 (2005).
[CrossRef]

Nakagawa, K.

K. Nakagawa, Y. Sato, M. Musha, and K. Ueda, “Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy,” Appl. Phys. B 80(4-5), 479–482 (2005).
[CrossRef]

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, “Accurate optical frequency atlas of the 1.5 um bands of acetylene,” J. Opt. Soc. Am. B 13(12), 2708–2714 (1996).
[CrossRef]

M. Labachelerie, K. Nakagawa, Y. Awaji, and M. Ohtsu, “High-frequency-stability laser at 1.5 µm using Doppler-free molecular lines,” Opt. Lett. 20(6), 572–574 (1995).
[CrossRef] [PubMed]

Naweed, A.

Ohtsu, M.

Okumura, K.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

Onae, A.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

Ouzounov, D. G.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

Petersen, J.

Petersen, J. C.

A. M. Cubillas, J. Hald, and J. C. Petersen, “High resolution spectroscopy of ammonia in a hollow-core fiber,” Opt. Express 16(6), 3976–3985 (2008).
[CrossRef] [PubMed]

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902–213904 (2007).
[CrossRef] [PubMed]

T. Ritari, H. Ludvigsen, and J. C. Petersen, “Photonic Bandgap Fibers in Gas Detection,” Spectroscopy 20, 30–34 (2005).

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Opt. Commun. 255(4-6), 272–277 (2005).
[CrossRef]

Peterson, J. C.

Ritari, T.

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Opt. Commun. 255(4-6), 272–277 (2005).
[CrossRef]

T. Ritari, H. Ludvigsen, and J. C. Petersen, “Photonic Bandgap Fibers in Gas Detection,” Spectroscopy 20, 30–34 (2005).

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
[CrossRef] [PubMed]

Robins, N. P.

Rowley, W. R. C.

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

Russell, P.

Russell, P. S. J.

P. S. J. Russell, ““Photonic-Crystal Fibers,” Lightwave Technology,” Journalism 24, 4729–4749 (2006).

F. Couny, P. S. Light, F. Benabid, and P. S. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263(1), 28–31 (2006).
[CrossRef]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Sato, Y.

K. Nakagawa, Y. Sato, M. Musha, and K. Ueda, “Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy,” Appl. Phys. B 80(4-5), 479–482 (2005).
[CrossRef]

Sharping, J. E.

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

Shiddiq, M.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203(1-2), 133–137 (2002).
[CrossRef]

Simonsen, H.

Sørensen, T.

Sukenik, C. I.

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203(1-2), 133–137 (2002).
[CrossRef]

Supplee, J. M.

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Thapa, R.

Tuominen, J.

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Opt. Commun. 255(4-6), 272–277 (2005).
[CrossRef]

T. Ritari, J. Tuominen, H. Ludvigsen, J. Petersen, T. Sørensen, T. Hansen, and H. Simonsen, “Gas sensing using air-guiding photonic bandgap fibers,” Opt. Express 12(17), 4080–4087 (2004).
[CrossRef] [PubMed]

Ueda, K.

K. Nakagawa, Y. Sato, M. Musha, and K. Ueda, “Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy,” Appl. Phys. B 80(4-5), 479–482 (2005).
[CrossRef]

Weaver, O. L.

Whittaker, E. A.

Widiyatomoko, B.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

Yamaguchi, A.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

Yoda, J.

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (2)

C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley, “High-accuracy frequency atlas of 13C2H2 in the 1.5 um region,” Appl. Phys. B 80(8), 977–983 (2005).
[CrossRef]

K. Nakagawa, Y. Sato, M. Musha, and K. Ueda, “Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy,” Appl. Phys. B 80(4-5), 479–482 (2005).
[CrossRef]

Eur. Phys. J. D (1)

P. Minutolo, C. Corsi, F. D’Amato, and M. De Rosa, “Self- and foreign-broadening and shift coefficients for C2H2 lines at 1.54 um,” Eur. Phys. J. D 17(2), 175–179 (2001).
[CrossRef]

Instrumentation and Measurement, IEEE Transactions on (1)

A. Onae, K. Okumura, J. Yoda, K. Nakagawa, A. Yamaguchi, M. Kourogi, K. Imai, and B. Widiyatomoko, “Toward an accurate frequency standard at 1.5 μm based on the acetylene overtone band transition,” Instrumentation and Measurement, IEEE Transactions on 48(2), 563–566 (1999).
[CrossRef]

J. Opt. Soc. Am. B (1)

Journalism (1)

P. S. J. Russell, ““Photonic-Crystal Fibers,” Lightwave Technology,” Journalism 24, 4729–4749 (2006).

Nat. Photonics (1)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Nature (2)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

F. Benabid, F. Couny, J. C. Knight, T. A. Birks, and P. S. J. Russell, “Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres,” Nature 434(7032), 488–491 (2005).
[CrossRef] [PubMed]

Opt. Commun. (3)

J. Tuominen, T. Ritari, H. Ludvigsen, and J. C. Petersen, “Gas filled photonic bandgap fibers as wavelength references,” Opt. Commun. 255(4-6), 272–277 (2005).
[CrossRef]

F. Couny, P. S. Light, F. Benabid, and P. S. J. Russell, “Electromagnetically induced transparency and saturable absorption in all-fiber devices based on 12C2H2-filled hollow-core photonic crystal fiber,” Opt. Commun. 263(1), 28–31 (2006).
[CrossRef]

C. I. Sukenik, H. C. Busch, and M. Shiddiq, “Modulation-free laser frequency stabilization and detuning,” Opt. Commun. 203(1-2), 133–137 (2002).
[CrossRef]

Opt. Express (5)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

J. Hald, J. C. Petersen, and J. Henningsen, “Saturated optical absorption by slow molecules in hollow-core photonic band-gap fibers,” Phys. Rev. Lett. 98(21), 213902–213904 (2007).
[CrossRef] [PubMed]

S. Ghosh, J. E. Sharping, D. G. Ouzounov, and A. L. Gaeta, “Resonant optical interactions with molecules confined in photonic band-gap fibers,” Phys. Rev. Lett. 94(9), 093902 (2005).
[CrossRef] [PubMed]

Spectroscopy (1)

T. Ritari, H. Ludvigsen, and J. C. Petersen, “Photonic Bandgap Fibers in Gas Detection,” Spectroscopy 20, 30–34 (2005).

Other (13)

J. B. Jensen, J. Riishede, J. Broengx, J. Laegsgaard, T. Tanggaard Larsen, T. Sorensen, K. Hougaard, E. Knudsen, S. B. Libori, and A. Bjarklev, “Photonic crystal fibers; fundamental properties and applications within sensors,” in Sensors, 2003. Proceedings of IEEE(2003), pp. 269–278 Vol.261.

J. C. Petersen, and J. Hald, “Frequency and wavelength standards based on gas filled HC-PBFs,” in Lasers and Electro-Optics, 2008 and 2008 Conference on Quantum Electronics and Laser Science. CLEO/QELS 2008. Conference on(2008), pp. 1–2.

M. J. Andrew, and K. Kevin, L. JinKang, T. Rajesh, T. Karl, C. Francois, S. L. Philip, B. Fetah, R. W. Brian, and L. C. Kristan, “Stability of Optical Frequency References Based on Acetylene-Filled Kagome-Structured Hollow Core Fiber,” in Frontiers in Optics(Optical Society of America, 2008), p. FWF7.

K. Knabe, A. Jones, K. L. Corwin, F. Couny, P. S. Light, and F. Benabid, “Saturated absorption spectroscopy of C2H2 inside a hollow, large-core kagome photonic crystal fiber,” (Institute of Electrical and Electronics Engineers Inc., San Jose, CA, United states, 2008).

NKT photonics, “HC-1550-02 fibre datasheet,” http://www.nktphotonics.com/side5334.html .

C. N. Banwell, and E. M. McCash, “Chapter 3: Infra-Red Spectroscopy,” in Fundamentals of Molecular Spectroscopy (McGraw-Hill, 1994).

O. Svelto, Principles of Lasers 4th Ed., Ch. 2, pp. 44–45 (Springer, 1998).

K. Shimoda, High-Resolution Laser Spectroscopy, Ch.2, pp. 12–14 (Springer-Verlag, 1976).

J. Elijah Kannatey-Asibu, “Broadening mechanisms,” in Principles of Laser Materials Processing, J. W. Sons, ed. (2009), pp. 90–92.

P. F. Bernath, “Transit time broadening,” in Spectra of atoms and molecules, O. U. P. USA, ed. (2005), pp. 31–33.

K. Knabe, R. Thapa, O. L. Weaver, B. R. Washburn, and K. L. Corwin, “Comparison of Saturated Absorption Spectra of Acetylene Gas Inside Photonic Bandgap Fibers,” in Tech. Digest, Symposium on Optical Fiber Measurements (SOFM 2006), Sep19–20,2006 (NIST Special Publication 1055, Boulder, CO, 2006), pp. 55–58.

P. Balling, and P. Křen, “Development of wavelength standard at 1542 nm: acetylene stabilized DFB laser,” in WDS'05 Proceedings of Contributed Papers: Part III - Physics, J. Šafránková, ed. (Matfyz press, Charles University, Prague, 2005), pp. 590–594.

T. O. P. T. I. C. A. Photonics, “Diode Laser Locking and Linewidth Narrowing,” http://www.toptica.com/products/itemlayer/177/Appl_1012_laser_locking_080917.pdf .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Pump-probe and laser stabilisation experimental scheme. Main elements and abbreviations used: VMOD = Modulation Voltage (wavelength modulation); VEXT = External Voltage (temperature control); TEC = Thermo Electric Cooler; I = Current Source; PROBE = Probe laser; PUMP = Pump laser; POL CTRL = Polarization Controller; CH = Chopper; ISOL = Optical Isolator; λ/2 = Half-wave plate; POL BS = Polarizing Beam Splitter; PBF = Photonic Bandgap Fibre; BS = Beam Splitter; WAV = Wavemeter; λ/4 = Quarter-wave plate; POL = Polarizer; LIA = Lock-In Amplifier; PC = Personal Computer. All wavelength-dependent elements are designed at a working point of 1.5 µm. Amplitude modulation using a chopper and wavelength modulation of the probe laser are alternatively implemented during the experiment depending on the detection technique.

Fig. 2
Fig. 2

(a) Non-resonant pump-probe saturation results for 1 mbar of acetylene inside the PBF at an input pump power of 40 mW. The measured Doppler width is ΔυD ≈470 MHz while a saturation dip of around 2% with a linewidth of 50 MHz is observed at the centre of the probe transmission spectrum. No modulation is applied to the probe in this case. (b) First-harmonic (1f) WM signal of the saturated probe transmission spectrum. The 1f signature of the saturation dip can be clearly observed in the line centre, with an approximate width of 50 MHz peak-to-peak as measured and shown in the inset.

Fig. 3
Fig. 3

(a) Comparison of pump laser emission frequency drift at constant laser temperature with and without implementation of a control loop. An open-loop drift in excess of 10 MHz is significantly reduced to a RMS value of 180 kHz around the gas line centre. Deliberate temperature perturbations are compensated for, as observed in the corresponding trace (scaled up by a factor of 50 for clarity). (b) Error signal amplitude as a function of pump laser temperature with the stabilisation loop implemented. The signal amplitude increases as the temperature is raised, thus compensating the external perturbation and stabilizing the laser emission wavelength. Stabilisation is achieved over a temperature interval of ΔT = 0.05°C, equivalent to an open-loop frequency drift in excess of 650 MHz as shown in the additional scale.

Metrics