Abstract

Ultra-low threshold lasers which operate in the telecommunications band and which can be integrated with other CMOS compatible elements have numerous applications in satellite communications, biochemical detection and optical computing. To achieve sub-mW lasing thresholds, it is necessary to optimize both the gain medium and the pump method. One of the most promising methods is to use rare-earth ions in a co- or tri-dopant configuration, where the lasing of the primary dopant is enhanced by the secondary one, thus improving the efficiency of the overall system. Here, we demonstrate an Erbium:Ytterbium co-doped microcavity-based laser which is lithographically fabricated on a silicon substrate. The quality factor and pump threshold are experimentally determined for a series of erbium and ytterbium doping concentrations, verifying the inter-dependent relationship between the two dopants. The lasing threshold of the optimized device is 4.2 μW.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
    [CrossRef]
  2. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
    [CrossRef]
  3. M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
    [CrossRef]
  4. Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
    [CrossRef]
  5. G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
    [CrossRef] [PubMed]
  6. J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
    [CrossRef]
  7. P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. DeNatale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of (C2H2)-C-13 in the 1540-1550 nm wavelength interval,” Appl. Phys. Lett. 71(19), 2731–2733 (1997).
    [CrossRef]
  8. M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
    [CrossRef]
  9. H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
    [CrossRef]
  10. P. Thilakan, G. Sasikala, and I. Suemune, “Fabrication and characterization of a high Q microdisc laser using InAs quantum dot active regions,” Nanotechnology 18(5), 055401 (2007).
    [CrossRef]
  11. H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
    [CrossRef]
  12. A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000).
    [CrossRef]
  13. I. K. Battisha, “Visible up-conversion photoluminescence from IR diode-pumped SiO2-TiO2 nano-composite films heavily doped with Er3+-Yb3+ and Nd3+-Yb3+,” J. Non-Cryst. Solids 353(18-21), 1748–1754 (2007).
    [CrossRef]
  14. D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
    [CrossRef]
  15. S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
    [CrossRef]
  16. J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994).
    [CrossRef]
  17. C. Li, R Moncorge, J. C. Souriau, C. Borel, and C. Wyon, “Room-Temperature CW Laser Action of Y2SiO5-Yb3+, Er3+ at 1.57μm,” Opt. Commun. 107(1-2), 61–64 (1994).
    [CrossRef]
  18. Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007).
    [CrossRef] [PubMed]
  19. P. Urquhart, “Review of rare earth doped fibre lasers and amplifiers,” IEEE Proc. J. Optoelectronics, 135, 385–407 (1988).
    [CrossRef]
  20. M. J. F. Digonnet, Rare-earth-doped fiber lasers and amplifiers (Marcel Dekker, New York, 2001), Chap.3.
  21. K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
    [CrossRef] [PubMed]
  22. M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
    [CrossRef] [PubMed]
  23. S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231(4737), 486–488 (1986).
    [CrossRef] [PubMed]
  24. V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
    [CrossRef] [PubMed]
  25. F. Lissillour, D. Messager, G. Stéphan, and P. Féron, “Whispering-gallery-mode laser at 1.56 mum excited by a fiber taper,” Opt. Lett. 26(14), 1051–1053 (2001).
    [CrossRef] [PubMed]
  26. L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 3 (2005).
    [CrossRef]
  27. E. P. Ostby, L. Yang, and K. J. Vahala, “Ultralow-threshold Yb(3+):SiO(2) glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007).
    [CrossRef] [PubMed]
  28. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
    [CrossRef]
  29. L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, “Mechanism of the Yb-Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93(7), 3873–3880 (2003).
    [CrossRef]
  30. P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
    [CrossRef]
  31. A. Selvarajan and T. Srinivas, “Optical amplification and photosensitivity in sol-gel based waveguides,” IEEE J. Quantum Electron. 37(9), 1117–1126 (2001).
    [CrossRef]
  32. G. Kakarantzas, S. G. Leon-Saval, T. A. Birks, and P. S. J. Russell, “Low-loss deposition of solgel-derived silica films on tapered fibers,” Opt. Lett. 29(7), 694–696 (2004).
    [CrossRef] [PubMed]
  33. L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005).
    [CrossRef]
  34. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
    [CrossRef] [PubMed]
  35. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998).
    [CrossRef] [PubMed]
  36. M. Cai and K. Vahala, “Highly efficient hybrid fiber taper coupled microsphere laser,” Opt. Lett. 26(12), 884–886 (2001).
    [CrossRef] [PubMed]
  37. W. J. Miniscalco, “Erbium-doped Glasses for Fiber Amplifiers at 1500-nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
    [CrossRef]
  38. K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
    [CrossRef]
  39. C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
    [CrossRef]
  40. Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, and G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009).
    [CrossRef] [PubMed]

2009 (1)

2008 (3)

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

2007 (6)

I. K. Battisha, “Visible up-conversion photoluminescence from IR diode-pumped SiO2-TiO2 nano-composite films heavily doped with Er3+-Yb3+ and Nd3+-Yb3+,” J. Non-Cryst. Solids 353(18-21), 1748–1754 (2007).
[CrossRef]

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

P. Thilakan, G. Sasikala, and I. Suemune, “Fabrication and characterization of a high Q microdisc laser using InAs quantum dot active regions,” Nanotechnology 18(5), 055401 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Y. J. Chen, Y. F. Lin, X. H. Gong, Z. D. Luo, and Y. D. Huang, “1.1 W diode-pumped Er:Yb laser at 1520 nm,” Opt. Lett. 32(18), 2759–2761 (2007).
[CrossRef] [PubMed]

E. P. Ostby, L. Yang, and K. J. Vahala, “Ultralow-threshold Yb(3+):SiO(2) glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007).
[CrossRef] [PubMed]

2006 (3)

K. Srinivasan, M. Borselli, O. Painter, A. Stintz, and S. Krishna, “Cavity Q, mode volume, and lasing threshold in small diameter AlGaAs microdisks with embedded quantum dots,” Opt. Express 14(3), 1094–1105 (2006).
[CrossRef] [PubMed]

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[CrossRef]

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
[CrossRef]

2005 (2)

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 3 (2005).
[CrossRef]

L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005).
[CrossRef]

2004 (6)

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[CrossRef]

M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
[CrossRef]

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

G. Kakarantzas, S. G. Leon-Saval, T. A. Birks, and P. S. J. Russell, “Low-loss deposition of solgel-derived silica films on tapered fibers,” Opt. Lett. 29(7), 694–696 (2004).
[CrossRef] [PubMed]

2003 (2)

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, “Mechanism of the Yb-Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93(7), 3873–3880 (2003).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

2002 (1)

K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
[CrossRef]

2001 (3)

2000 (2)

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
[CrossRef]

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000).
[CrossRef]

1999 (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

1998 (1)

1997 (1)

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. DeNatale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of (C2H2)-C-13 in the 1540-1550 nm wavelength interval,” Appl. Phys. Lett. 71(19), 2731–2733 (1997).
[CrossRef]

1996 (2)

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, “Ultimate Q of optical microsphere resonators,” Opt. Lett. 21(7), 453–455 (1996).
[CrossRef] [PubMed]

1994 (2)

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994).
[CrossRef]

C. Li, R Moncorge, J. C. Souriau, C. Borel, and C. Wyon, “Room-Temperature CW Laser Action of Y2SiO5-Yb3+, Er3+ at 1.57μm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

1991 (1)

W. J. Miniscalco, “Erbium-doped Glasses for Fiber Amplifiers at 1500-nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

1988 (1)

P. Urquhart, “Review of rare earth doped fibre lasers and amplifiers,” IEEE Proc. J. Optoelectronics, 135, 385–407 (1988).
[CrossRef]

1986 (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231(4737), 486–488 (1986).
[CrossRef] [PubMed]

Alegria, C.

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

Archambault, J. L.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994).
[CrossRef]

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Arnon, S.

M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
[CrossRef]

Battisha, I. K.

I. K. Battisha, “Visible up-conversion photoluminescence from IR diode-pumped SiO2-TiO2 nano-composite films heavily doped with Er3+-Yb3+ and Nd3+-Yb3+,” J. Non-Cryst. Solids 353(18-21), 1748–1754 (2007).
[CrossRef]

Birks, T. A.

Borel, C.

C. Li, R Moncorge, J. C. Souriau, C. Borel, and C. Wyon, “Room-Temperature CW Laser Action of Y2SiO5-Yb3+, Er3+ at 1.57μm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

Borselli, M.

Boucher, D.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
[CrossRef]

Boulon, G.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000).
[CrossRef]

Brenier, A.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000).
[CrossRef]

Cai, M.

Cao, H.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
[CrossRef]

Carmon, T.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 3 (2005).
[CrossRef]

Chang, C. J.

L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005).
[CrossRef]

Chang, R. K.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231(4737), 486–488 (1986).
[CrossRef] [PubMed]

Chang, S. H.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
[CrossRef]

Chen, C. L.

L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005).
[CrossRef]

Chen, J. S.

L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005).
[CrossRef]

Chen, Q.

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

Chen, W.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
[CrossRef]

Chen, Y. J.

Chu, S.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Codemard, C.

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

Cohen, O.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Coluccelli, N.

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

Cousin, J.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
[CrossRef]

da Vila, L. D.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, “Mechanism of the Yb-Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93(7), 3873–3880 (2003).
[CrossRef]

DeNatale, P.

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. DeNatale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of (C2H2)-C-13 in the 1540-1550 nm wavelength interval,” Appl. Phys. Lett. 71(19), 2731–2733 (1997).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Dong, C. H.

Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, and G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009).
[CrossRef] [PubMed]

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

Duchesne, D.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Dutta, N. K.

K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Féron, P.

Ferraris, M.

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

Ferrera, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Fu, L.

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

Gebavi, H.

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

Gomes, L.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, “Mechanism of the Yb-Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93(7), 3873–3880 (2003).
[CrossRef]

Gong, X. H.

Gorodetsky, M. L.

Gu, C.

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

Guelman, M.

M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
[CrossRef]

Guo, G. C.

Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, and G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009).
[CrossRef] [PubMed]

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

Guo, L. J.

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[CrossRef]

Han, Z. F.

Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, and G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009).
[CrossRef] [PubMed]

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

Hare, J.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Haroche, S.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Ho, S. T.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
[CrossRef]

Huang, Y. D.

Ibsen, M.

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

Ilchenko, V. S.

Jeong, Y.

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

Jiang, X. S.

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

Kakarantzas, G.

Kalkman, J.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Kassi, S.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
[CrossRef]

Kazarian, A.

M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
[CrossRef]

Kimble, H. J.

Kippenberg, T. J.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Kogan, A.

M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
[CrossRef]

Kringlebotn, J. T.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994).
[CrossRef]

Krishna, S.

Kuo, Y. H.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Lai, Y. S.

L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005).
[CrossRef]

Laporta, P.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. DeNatale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of (C2H2)-C-13 in the 1540-1550 nm wavelength interval,” Appl. Phys. Lett. 71(19), 2731–2733 (1997).
[CrossRef]

Le Flem, G.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000).
[CrossRef]

Lee, Y. P.

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[CrossRef]

Lefèvre-Seguin, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Leon-Saval, S. G.

Li, C.

C. Li, R Moncorge, J. C. Souriau, C. Borel, and C. Wyon, “Room-Temperature CW Laser Action of Y2SiO5-Yb3+, Er3+ at 1.57μm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

Li, S. F.

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[CrossRef]

Liao, G.

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

Lin, Y. F.

Liscidini, M.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Lissillour, F.

Little, B. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Livne, A.

M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
[CrossRef]

Longhi, S.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. DeNatale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of (C2H2)-C-13 in the 1540-1550 nm wavelength interval,” Appl. Phys. Lett. 71(19), 2731–2733 (1997).
[CrossRef]

Lu, K.

K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
[CrossRef]

Luo, Z. D.

Ma, Y.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
[CrossRef]

Mabuchi, H.

Masselin, P.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
[CrossRef]

Messadeq, Y.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, “Mechanism of the Yb-Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93(7), 3873–3880 (2003).
[CrossRef]

Messager, D.

Michalik, H.

M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
[CrossRef]

Milanese, D.

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

Min, B.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 3 (2005).
[CrossRef]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Ming, H.

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

Miniscalco, W. J.

W. J. Miniscalco, “Erbium-doped Glasses for Fiber Amplifiers at 1500-nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

Mokhtar, M. R.

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

Moncorge, R

C. Li, R Moncorge, J. C. Souriau, C. Borel, and C. Wyon, “Room-Temperature CW Laser Action of Y2SiO5-Yb3+, Er3+ at 1.57μm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

Morandotti, R.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Moss, D. J.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Nilsson, J.

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

Obaton, A. F.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000).
[CrossRef]

Orenstein, M.

M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
[CrossRef]

Ostby, E. P.

Painter, O.

Paniccia, M.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Parent, C.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000).
[CrossRef]

Payne, D. N.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994).
[CrossRef]

Polman, A.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Qian, S. X.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231(4737), 486–488 (1986).
[CrossRef] [PubMed]

Raday, O.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Raimond, J.-M.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Razzari, L.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Reed, G. T.

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

Reekie, L.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994).
[CrossRef]

Ribeiro, S. J. L.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, “Mechanism of the Yb-Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93(7), 3873–3880 (2003).
[CrossRef]

Romanini, D.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
[CrossRef]

Rong, H. S.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Russell, P. S. J.

Sahu, J. K.

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

Sandoghdar, V.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Sasikala, G.

P. Thilakan, G. Sasikala, and I. Suemune, “Fabrication and characterization of a high Q microdisc laser using InAs quantum dot active regions,” Nanotechnology 18(5), 055401 (2007).
[CrossRef]

Savchenkov, A. A.

Selvarajan, A.

A. Selvarajan and T. Srinivas, “Optical amplification and photosensitivity in sol-gel based waveguides,” IEEE J. Quantum Electron. 37(9), 1117–1126 (2001).
[CrossRef]

Sih, V.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Sipe, J. E.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Snow, J. B.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231(4737), 486–488 (1986).
[CrossRef] [PubMed]

Solomon, G. S.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
[CrossRef]

Souriau, J. C.

C. Li, R Moncorge, J. C. Souriau, C. Borel, and C. Wyon, “Room-Temperature CW Laser Action of Y2SiO5-Yb3+, Er3+ at 1.57μm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

Spillane, S. M.

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 3 (2005).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Srinivas, T.

A. Selvarajan and T. Srinivas, “Optical amplification and photosensitivity in sol-gel based waveguides,” IEEE J. Quantum Electron. 37(9), 1117–1126 (2001).
[CrossRef]

Srinivasan, K.

Stéphan, G.

Stintz, A.

Streed, E. W.

Suemune, I.

P. Thilakan, G. Sasikala, and I. Suemune, “Fabrication and characterization of a high Q microdisc laser using InAs quantum dot active regions,” Nanotechnology 18(5), 055401 (2007).
[CrossRef]

Svelto, C.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. DeNatale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of (C2H2)-C-13 in the 1540-1550 nm wavelength interval,” Appl. Phys. Lett. 71(19), 2731–2733 (1997).
[CrossRef]

Svelto, O.

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

Szriftgiser, P.

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
[CrossRef]

Taccheo, S.

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. DeNatale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of (C2H2)-C-13 in the 1540-1550 nm wavelength interval,” Appl. Phys. Lett. 71(19), 2731–2733 (1997).
[CrossRef]

Tarelho, L. V. G.

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, “Mechanism of the Yb-Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93(7), 3873–3880 (2003).
[CrossRef]

Thilakan, P.

P. Thilakan, G. Sasikala, and I. Suemune, “Fabrication and characterization of a high Q microdisc laser using InAs quantum dot active regions,” Nanotechnology 18(5), 055401 (2007).
[CrossRef]

Thony, P.

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000).
[CrossRef]

Tong, L. M.

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

Townsend, J. E.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994).
[CrossRef]

Treussart, F.

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Tsai, P. H.

L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005).
[CrossRef]

Tzeng, H. M.

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231(4737), 486–488 (1986).
[CrossRef] [PubMed]

Urquhart, P.

P. Urquhart, “Review of rare earth doped fibre lasers and amplifiers,” IEEE Proc. J. Optoelectronics, 135, 385–407 (1988).
[CrossRef]

Vahala, K.

Vahala, K. J.

E. P. Ostby, L. Yang, and K. J. Vahala, “Ultralow-threshold Yb(3+):SiO(2) glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007).
[CrossRef] [PubMed]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 3 (2005).
[CrossRef]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Vernooy, D. W.

Vienne, G. G.

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994).
[CrossRef]

Vota, M.

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

Wyon, C.

C. Li, R Moncorge, J. C. Souriau, C. Borel, and C. Wyon, “Room-Temperature CW Laser Action of Y2SiO5-Yb3+, Er3+ at 1.57μm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

Xiang, W. H.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
[CrossRef]

Xiao, Y. F.

Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, and G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009).
[CrossRef] [PubMed]

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

Xing, J.

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

Xu, J. Y.

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
[CrossRef]

Xu, S. B.

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Yang, J.

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[CrossRef]

Yang, L.

Y. F. Xiao, C. H. Dong, C. L. Zou, Z. F. Han, L. Yang, and G. C. Guo, “Low-threshold microlaser in a high-Q asymmetrical microcavity,” Opt. Lett. 34(4), 509–511 (2009).
[CrossRef] [PubMed]

E. P. Ostby, L. Yang, and K. J. Vahala, “Ultralow-threshold Yb(3+):SiO(2) glass laser fabricated by the solgel process,” Opt. Lett. 32(18), 2650–2652 (2007).
[CrossRef] [PubMed]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 3 (2005).
[CrossRef]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Yang, L. L.

L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005).
[CrossRef]

Yang, Z.

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

Zhang, Q. Y.

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[CrossRef]

Zou, C. L.

Appl. Phys. B (1)

J. Cousin, P. Masselin, W. Chen, D. Boucher, S. Kassi, D. Romanini, and P. Szriftgiser, “Application of a continuous-wave tunable erbium-doped fiber laser to molecular spectroscopy in the near infrared,” Appl. Phys. B 83(2), 261–266 (2006).
[CrossRef]

Appl. Phys. Lett. (3)

P. Laporta, S. Taccheo, S. Longhi, C. Svelto, and P. DeNatale, “Frequency locking of tunable Er:Yb microlasers to absorption lines of (C2H2)-C-13 in the 1540-1550 nm wavelength interval,” Appl. Phys. Lett. 71(19), 2731–2733 (1997).
[CrossRef]

H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon, “Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett. 76(24), 3519–3521 (2000).
[CrossRef]

L. Yang, T. Carmon, B. Min, S. M. Spillane, and K. J. Vahala, “Erbium-doped and Raman microlasers on a silicon chip fabricated by the sol-gel process,” Appl. Phys. Lett. 86(9), 3 (2005).
[CrossRef]

Electron. Lett. (1)

J. T. Kringlebotn, J. L. Archambault, L. Reekie, J. E. Townsend, G. G. Vienne, and D. N. Payne, “Highly-Efficient, Low-Noise Grating-Feedback Er3+-Yb3+ codoped Fiber Laser,” Electron. Lett. 30(12), 972–973 (1994).
[CrossRef]

IEEE J. Quantum Electron. (1)

A. Selvarajan and T. Srinivas, “Optical amplification and photosensitivity in sol-gel based waveguides,” IEEE J. Quantum Electron. 37(9), 1117–1126 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. Yang and L. J. Guo, “Optical sensors based on active microcavities,” IEEE J. Sel. Top. Quantum Electron. 12(1), 143–147 (2006).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

Y. Jeong, C. Alegria, J. K. Sahu, L. Fu, M. Ibsen, C. Codemard, M. R. Mokhtar, and J. Nilsson, “A 43-W C-band tunable narrow-linewidth erbium-ytterbium codoped large-core fiber laser,” IEEE Photon. Technol. Lett. 16(3), 756–758 (2004).
[CrossRef]

C. H. Dong, Y. F. Xiao, Z. F. Han, G. C. Guo, X. S. Jiang, L. M. Tong, C. Gu, and H. Ming, “Low-threshold microlaser in Er: Yb phosphate glass coated microsphere,” IEEE Photon. Technol. Lett. 20(5), 342–344 (2008).
[CrossRef]

IEEE Proc. J. Optoelectronics, (1)

P. Urquhart, “Review of rare earth doped fibre lasers and amplifiers,” IEEE Proc. J. Optoelectronics, 135, 385–407 (1988).
[CrossRef]

IEEE Trans. Aerosp. Electron. Syst. (1)

M. Guelman, A. Kogan, A. Kazarian, A. Livne, M. Orenstein, H. Michalik, and S. Arnon, “Acquisition and pointing control for inter-satellite laser communications,” IEEE Trans. Aerosp. Electron. Syst. 40(4), 1239–1248 (2004).
[CrossRef]

J. Alloy. Comp. (1)

A. F. Obaton, C. Parent, G. Le Flem, P. Thony, A. Brenier, and G. Boulon, “Yb3+-Er3+-codoped LaLiP4O12 glass: a new eye-safe laser at 1535 nm,” J. Alloy. Comp. 300-301(1-2), 123–130 (2000).
[CrossRef]

J. Appl. Phys. (3)

S. F. Li, Q. Y. Zhang, and Y. P. Lee, “Absorption and photoluminescence properties of Er-doped and Er/Yb codoped soda-silicate laser glasses,” J. Appl. Phys. 96(9), 4746–4750 (2004).
[CrossRef]

L. D. da Vila, L. Gomes, L. V. G. Tarelho, S. J. L. Ribeiro, and Y. Messadeq, “Mechanism of the Yb-Er energy transfer in fluorozirconate glass,” J. Appl. Phys. 93(7), 3873–3880 (2003).
[CrossRef]

K. Lu and N. K. Dutta, “Spectroscopic properties of Yb-doped silica glass,” J. Appl. Phys. 91(2), 576–581 (2002).
[CrossRef]

J. Lightwave Technol. (1)

W. J. Miniscalco, “Erbium-doped Glasses for Fiber Amplifiers at 1500-nm,” J. Lightwave Technol. 9(2), 234–250 (1991).
[CrossRef]

J. Mater. Res. (1)

L. L. Yang, Y. S. Lai, J. S. Chen, P. H. Tsai, C. L. Chen, and C. J. Chang, “Compositional tailored sol-gel SiO2-TiO2 thin films: Crystallization, chemical bonding configuration, and optical properties,” J. Mater. Res. 20(11), 3141–3149 (2005).
[CrossRef]

J. Non-Cryst. Solids (2)

I. K. Battisha, “Visible up-conversion photoluminescence from IR diode-pumped SiO2-TiO2 nano-composite films heavily doped with Er3+-Yb3+ and Nd3+-Yb3+,” J. Non-Cryst. Solids 353(18-21), 1748–1754 (2007).
[CrossRef]

D. Milanese, M. Vota, Q. Chen, J. Xing, G. Liao, H. Gebavi, M. Ferraris, N. Coluccelli, and S. Taccheo, “Investigation of infrared emission and lifetime in Tm-doped 75TeO(2): 20ZnO: 5Na(2)O (mol%) glasses: Effect of Ho and Yb co-doping,” J. Non-Cryst. Solids 354(18), 1955–1961 (2008).
[CrossRef]

Nanotechnology (1)

P. Thilakan, G. Sasikala, and I. Suemune, “Fabrication and characterization of a high Q microdisc laser using InAs quantum dot active regions,” Nanotechnology 18(5), 055401 (2007).
[CrossRef]

Nat. Photonics (3)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nat. Photonics 1(2), 106–114 (2007).
[CrossRef]

M. Ferrera, L. Razzari, D. Duchesne, R. Morandotti, Z. Yang, M. Liscidini, J. E. Sipe, S. Chu, B. E. Little, and D. J. Moss, “Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures,” Nat. Photonics 2(12), 737–740 (2008).
[CrossRef]

H. S. Rong, S. B. Xu, Y. H. Kuo, V. Sih, O. Cohen, O. Raday, and M. Paniccia, “Low-threshold continuous-wave Raman silicon laser,” Nat. Photonics 1(4), 232–237 (2007).
[CrossRef]

Nature (2)

G. T. Reed, “Device physics: the optical age of silicon,” Nature 427(6975), 595–596 (2004).
[CrossRef] [PubMed]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421(6926), 925–928 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

C. Li, R Moncorge, J. C. Souriau, C. Borel, and C. Wyon, “Room-Temperature CW Laser Action of Y2SiO5-Yb3+, Er3+ at 1.57μm,” Opt. Commun. 107(1-2), 61–64 (1994).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Opt. Mater. (1)

P. Laporta, S. Taccheo, S. Longhi, O. Svelto, and C. Svelto, “Erbium-ytterbium microlasers: optical properties and lasing characteristics,” Opt. Mater. 11(2-3), 269–288 (1999).
[CrossRef]

Phys. Rev. A (2)

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

V. Sandoghdar, F. Treussart, J. Hare, V. Lefèvre-Seguin, J.-M. Raimond, and S. Haroche, “Very low threshold whispering-gallery-mode microsphere laser,” Phys. Rev. A 54(3), R1777–R1780 (1996).
[CrossRef] [PubMed]

Science (1)

S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, “Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission,” Science 231(4737), 486–488 (1986).
[CrossRef] [PubMed]

Other (1)

M. J. F. Digonnet, Rare-earth-doped fiber lasers and amplifiers (Marcel Dekker, New York, 2001), Chap.3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

A scanning electron-micrography of the fabricated Er3+:Yb3+ co-doped sol-gel microtoroid. The inset is a scanning electron-micrography of the Er3+:Yb3+ co-doped sol-gel microdisk prior to the reflow process.

Fig. 2
Fig. 2

Measured quality factors (Q) of the devices as a function of different Er3+:Yb3+ doping concentrations. (a) Varying the Er3+ concentration from 0.025 to 0.25wt%, with 0.25 wt% Yb3+ concentration. (b) Varying theYb3+ concentration from 0.05 to 1.0wt%, with 0.05 wt% Er3+ concentration. The inset is an example of resonance spectra and Lorentzian fit of an Er3+:Yb3+ co-doped sol-gel microtoroid at 980 nm. This device had a Q of 4.18x106. The data is fit to an equation of the form y = axb, which is the appropriate expression [28]. The parameters [a, b] from the fit are within an order of magnitude of the expected values [37,38]. Note that these Q factor measurements were performed at 980nm or the pump wavelength of the microlaser, and not the lasing wavelength.

Fig. 3
Fig. 3

Single-mode and multi-mode lasing spectra. (a) Typical emission spectrum of single-mode Er3+:Yb3+ co-doped microtoroid laser. The insert is a top-view photograph of testing setup of a Er3+:Yb3+ co-doped microtoroid laser coupled by a fiber taper. (b) Typical emission spectrum of a multi-mode Er:Yb co-doped microtoroid laser. The spacing between the lasing lines is the free spectral range of the resonant cavity.

Fig. 4
Fig. 4

Measured laser output power as a function of absorbed pump power for an Er3+:Yb3+ co-doped microlaser with principal diameter of 40 μm. The lasing threshold is 4.2 μW with pump wavelength at 980 nm and lasing wavelength at 1552 nm.

Fig. 5
Fig. 5

Microlaser threshold dependence on co-dopant concentration. The threshold was determined for a series of different doping concentrations of erbium and ytterbium ions. (a) Operation of Er3+ concentration with 0.25 wt% Yb3+ concentration. (b) Operation of Yb3+ concentration with 0.05 wt% Er3+ concentration. The minimum threshold achieved is 4.2μW at Er3+ concentration of 0.05 wt% and Yb3+ concentration of 0.075 wt%. While the Q factor changes with dopant concentration, as detailed in Fig. 2, all other potential variables (coupling condition, 980nm laser coupling efficiency, toroid diameter, etc) are held constant for all measurements.

Metrics