Abstract

We propose and numerically verify a scheme for compact optical modulation which can enable complex directional switching of signals in integrated micro-optical circuits within hundreds of femtoseconds. The scheme is based on a trimer comprised of two identical silica whispering gallery mode (WGM) microresonators spaced by a central non-linear WGM resonator. The non-linear resonator is in the form of a silica cylinder with a thin coating of an ultrafast Kerr nonlinear material (a J-aggregate of cyanine dye). Using a two-dimensional finite-difference time-domain method and realistic material and structural parameters, we investigated the near-field coupling from a waveguide to the trimer and the subsequent switching process. In our scheme the sandwiched central control resonator has a resonant frequency that is mismatched to that of the input and output resonators. Therefore the optical energy is coupled from the waveguide into only the primary resonator in linear operation. However, for control light intensities of more than ~10−2 W/μm the effective index and hence eigenfrequency of the central resonator can be shifted to match that of its neighbors and hence the optical energy can be redirected.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
    [CrossRef] [PubMed]
  2. T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
    [CrossRef]
  3. Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
    [CrossRef] [PubMed]
  4. T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
    [CrossRef]
  5. S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, “Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express 15(23), 15523–15530 (2007).
    [CrossRef] [PubMed]
  6. M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
    [CrossRef] [PubMed]
  7. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
    [CrossRef] [PubMed]
  8. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [CrossRef] [PubMed]
  9. J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92(6), 2223–2229 (2007).
    [CrossRef] [PubMed]
  10. V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
    [CrossRef] [PubMed]
  11. M. Haraguchi, T. Okamoto, and M. Fukui, ““Optical Switching Phenomena of Kerr Nonlinear Microsphere Due to Near-Field Coupling: Numerical Analysis,” IEICE. Trans. Electron,” E 85-C, 2059 (2002).
  12. M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004).
    [CrossRef]
  13. A. E. Miroshnichenko and Y. S. Kivshar, “Mach-Zehnder-Fano interferometer,” Appl. Phys. Lett. 95(12), 121109 (2009).
    [CrossRef]
  14. L. Li, X. Zhang, and L. Chen, “Optical bistability and Fano-like resonance transmission in a ring cavity-coupled Michelson interferometer,” J. Opt. A, Pure Appl. Opt. 10(7), 075305 (2008).
    [CrossRef]
  15. K. Yamaguchi, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Fabrication and Optical Evaluation of Silica Microsphere Coated with J-Aggregates,” Jpn. J. Appl. Phys. 45(No. 8B), 6750–6753 (2006).
    [CrossRef]
  16. K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006).
    [CrossRef]
  17. S. Yang and V. N. Astratov, “Spectroscopy of coherently coupled whispering-gallery modes in size-matched bispheres assembled on a substrate,” Opt. Lett. 34(13), 2057–2059 (2009).
    [CrossRef] [PubMed]
  18. S. V. Boriskina, “Spectral engineering of bends and branches in microdisk coupled-resonator optical waveguides,” Opt. Express 15(25), 17371–17379 (2007).
    [CrossRef] [PubMed]
  19. M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express 13(20), 8286–8295 (2005).
    [CrossRef] [PubMed]
  20. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 1st ed. (Artech House, Norwood, MA, 1995).
  21. J. H. Greene and A. Taflove, “General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics,” Opt. Express 14(18), 8305 (2006).
    [CrossRef] [PubMed]

2009 (3)

2008 (3)

L. Li, X. Zhang, and L. Chen, “Optical bistability and Fano-like resonance transmission in a ring cavity-coupled Michelson interferometer,” J. Opt. A, Pure Appl. Opt. 10(7), 075305 (2008).
[CrossRef]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

2007 (3)

2006 (3)

K. Yamaguchi, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Fabrication and Optical Evaluation of Silica Microsphere Coated with J-Aggregates,” Jpn. J. Appl. Phys. 45(No. 8B), 6750–6753 (2006).
[CrossRef]

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

J. H. Greene and A. Taflove, “General vector auxiliary differential equation finite-difference time-domain method for nonlinear optics,” Opt. Express 14(18), 8305 (2006).
[CrossRef] [PubMed]

2005 (2)

M. L. Povinelli, S. G. Johnson, M. Loncar, M. Ibanescu, E. J. Smythe, F. Capasso, and J. D. Joannopoulos, “High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery- mode resonators,” Opt. Express 13(20), 8286–8295 (2005).
[CrossRef] [PubMed]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

2004 (3)

M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004).
[CrossRef]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

2003 (1)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Haraguchi, T. Okamoto, and M. Fukui, ““Optical Switching Phenomena of Kerr Nonlinear Microsphere Due to Near-Field Coupling: Numerical Analysis,” IEICE. Trans. Electron,” E 85-C, 2059 (2002).

1999 (1)

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Arnold, S.

Astratov, V. N.

Baba, T.

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Binsma, H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Boriskina, S. V.

Capasso, F.

Chen, L.

L. Li, X. Zhang, and L. Chen, “Optical bistability and Fano-like resonance transmission in a ring cavity-coupled Michelson interferometer,” J. Opt. A, Pure Appl. Opt. 10(7), 075305 (2008).
[CrossRef]

Cupps, J. M.

De Vries, T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Den Besten, J. H.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Dorren, H. J. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Fan, X.

Fujii, M.

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

Fukui, M.

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

K. Yamaguchi, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Fabrication and Optical Evaluation of Silica Microsphere Coated with J-Aggregates,” Jpn. J. Appl. Phys. 45(No. 8B), 6750–6753 (2006).
[CrossRef]

M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004).
[CrossRef]

M. Haraguchi, T. Okamoto, and M. Fukui, ““Optical Switching Phenomena of Kerr Nonlinear Microsphere Due to Near-Field Coupling: Numerical Analysis,” IEICE. Trans. Electron,” E 85-C, 2059 (2002).

Greene, J. H.

Hara, Y.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

Haraguchi, M.

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

K. Yamaguchi, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Fabrication and Optical Evaluation of Silica Microsphere Coated with J-Aggregates,” Jpn. J. Appl. Phys. 45(No. 8B), 6750–6753 (2006).
[CrossRef]

M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004).
[CrossRef]

M. Haraguchi, T. Okamoto, and M. Fukui, ““Optical Switching Phenomena of Kerr Nonlinear Microsphere Due to Near-Field Coupling: Numerical Analysis,” IEICE. Trans. Electron,” E 85-C, 2059 (2002).

Hill, M. T.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Holler, S.

Ibanescu, M.

Ilchenko, V. S.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

Jimba, Y.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kato, K.

M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004).
[CrossRef]

Keng, D.

Khoe, G. D.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Kivshar, Y. S.

A. E. Miroshnichenko and Y. S. Kivshar, “Mach-Zehnder-Fano interferometer,” Appl. Phys. Lett. 95(12), 121109 (2009).
[CrossRef]

Komatsu, F.

M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004).
[CrossRef]

Kuwata-Gonokami, M.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Lacey, S.

Leijtens, X. J. M.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Li, L.

L. Li, X. Zhang, and L. Chen, “Optical bistability and Fano-like resonance transmission in a ring cavity-coupled Michelson interferometer,” J. Opt. A, Pure Appl. Opt. 10(7), 075305 (2008).
[CrossRef]

Loncar, M.

Maleki, L.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

Matsko, A. B.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

Miroshnichenko, A. E.

A. E. Miroshnichenko and Y. S. Kivshar, “Mach-Zehnder-Fano interferometer,” Appl. Phys. Lett. 95(12), 121109 (2009).
[CrossRef]

Miyazaki, H.

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Mukaiyama, T.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Niimi, T.

K. Yamaguchi, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Fabrication and Optical Evaluation of Silica Microsphere Coated with J-Aggregates,” Jpn. J. Appl. Phys. 45(No. 8B), 6750–6753 (2006).
[CrossRef]

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

Oei, Y. S.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Okamoto, T.

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

K. Yamaguchi, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Fabrication and Optical Evaluation of Silica Microsphere Coated with J-Aggregates,” Jpn. J. Appl. Phys. 45(No. 8B), 6750–6753 (2006).
[CrossRef]

M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004).
[CrossRef]

M. Haraguchi, T. Okamoto, and M. Fukui, ““Optical Switching Phenomena of Kerr Nonlinear Microsphere Due to Near-Field Coupling: Numerical Analysis,” IEICE. Trans. Electron,” E 85-C, 2059 (2002).

Povinelli, M. L.

Savchenkov, A. A.

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

Shopova, S. I.

Smalbrugge, B.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Smit, M. K.

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Smythe, E. J.

Sun, Y.

Taflove, A.

Tajiri, K.

M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004).
[CrossRef]

Takeda, K.

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Topolancik, J.

J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92(6), 2223–2229 (2007).
[CrossRef] [PubMed]

Vahala, K. J.

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

Vollmer, F.

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering Gallery Mode Carousel--a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[CrossRef] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92(6), 2223–2229 (2007).
[CrossRef] [PubMed]

White, I. M.

Yamaguchi, K.

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

K. Yamaguchi, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Fabrication and Optical Evaluation of Silica Microsphere Coated with J-Aggregates,” Jpn. J. Appl. Phys. 45(No. 8B), 6750–6753 (2006).
[CrossRef]

Yang, S.

Zhang, P.

Zhang, X.

L. Li, X. Zhang, and L. Chen, “Optical bistability and Fano-like resonance transmission in a ring cavity-coupled Michelson interferometer,” J. Opt. A, Pure Appl. Opt. 10(7), 075305 (2008).
[CrossRef]

Zurawsky, W.

Appl. Phys. Lett. (1)

A. E. Miroshnichenko and Y. S. Kivshar, “Mach-Zehnder-Fano interferometer,” Appl. Phys. Lett. 95(12), 121109 (2009).
[CrossRef]

Biophys. J. (1)

J. Topolancik and F. Vollmer, “Photoinduced transformations in bacteriorhodopsin membrane monitored with optical microcavities,” Biophys. J. 92(6), 2223–2229 (2007).
[CrossRef] [PubMed]

E (1)

M. Haraguchi, T. Okamoto, and M. Fukui, ““Optical Switching Phenomena of Kerr Nonlinear Microsphere Due to Near-Field Coupling: Numerical Analysis,” IEICE. Trans. Electron,” E 85-C, 2059 (2002).

J. Opt. A, Pure Appl. Opt. (1)

L. Li, X. Zhang, and L. Chen, “Optical bistability and Fano-like resonance transmission in a ring cavity-coupled Michelson interferometer,” J. Opt. A, Pure Appl. Opt. 10(7), 075305 (2008).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Yamaguchi, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Fabrication and Optical Evaluation of Silica Microsphere Coated with J-Aggregates,” Jpn. J. Appl. Phys. 45(No. 8B), 6750–6753 (2006).
[CrossRef]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

T. Baba, “Slow light in photonic crystals,” Nat. Photonics 2(8), 465–473 (2008).
[CrossRef]

Nature (2)

K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003).
[CrossRef] [PubMed]

M. T. Hill, H. J. S. Dorren, T. De Vries, X. J. M. Leijtens, J. H. Den Besten, B. Smalbrugge, Y. S. Oei, H. Binsma, G. D. Khoe, and M. K. Smit, “A fast low-power optical memory based on coupled micro-ring lasers,” Nature 432(7014), 206–209 (2004).
[CrossRef] [PubMed]

Opt. Express (5)

Opt. Lett. (1)

Opt. Rev. (1)

K. Yamaguchi, M. Fujii, T. Niimi, M. Haraguchi, T. Okamoto, and M. Fukui, “Self-Modulation of Scattering Intensity from a Silica Sphere Coated with a Sol-Gel Film Doped with J-Aggregates,” Opt. Rev. 13(4), 292–296 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, and L. Maleki, “Nonlinear optics and crystalline whispering gallery mode cavities,” Phys. Rev. Lett. 92(4), 043903 (2004).
[CrossRef] [PubMed]

Y. Hara, T. Mukaiyama, K. Takeda, and M. Kuwata-Gonokami, “Heavy photon states in photonic chains of resonantly coupled cavities with supermonodispersive microspheres,” Phys. Rev. Lett. 94(20), 203905 (2005).
[CrossRef] [PubMed]

T. Mukaiyama, K. Takeda, H. Miyazaki, Y. Jimba, and M. Kuwata-Gonokami, “Tight-Binding Photonic Molecule Modes of Resonant Bispheres,” Phys. Rev. Lett. 82(23), 4623–4626 (1999).
[CrossRef]

Surf. Sci. (1)

M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and K. Kato, “Fabrication and optical characterization of a TiO2 thin film on a SiO2 micro-sphere,” Surf. Sci. 548(1-3), 59–66 (2004).
[CrossRef]

Other (1)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 1st ed. (Artech House, Norwood, MA, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

The conceptual scheme of all-optical switching device

Fig. 2
Fig. 2

Geometry for the numerical simulations. (a) Cylinder 1: Single silica cylinder, (b) Cylinder 2: Single silica cylinder coated with the nonlinear optical material. In the 2D-FDTD calculations a unit cell size of 25 nm was used throughout the paper.

Fig. 3
Fig. 3

Calculation structure. Cylinder 2 sandwiched by two silica cylinders (Cylinder 1 and 3).

Fig. 4
Fig. 4

The wavelength dependency of electric field intensity for the single cylinders excited by the waveguide at the input cylinder (black line) and the control cylinder (red line) in absence of the control beam. The intensities are taken at the observation points noted in Fig. 2.

Fig. 5
Fig. 5

The wavelength dependency of electric field intensity for the trimer structure at the input Cylinder 1 (black line), control Cylinder 2 (red line) and output Cylinder 3 (blue line) in the absence of the control beam. The intensities are taken at the observation points noted in Fig. 3.

Fig. 6
Fig. 6

Variation of the electric field intensity spectra depending on the incident angle for a single cylinder at observation points in Fig. 2. Figures 6(a) and 6(b) are for Cylinder 1 and Cylinder 2, respectively. The black, the red, the blue and the green line show incident angle of 45°, 50°, 55° and 60°, respectively.

Fig. 7
Fig. 7

Calculated output light intensity spectra on the observation lines without the control beam. In the inset, enlarged from 735 to 765 nm.

Fig. 8
Fig. 8

Dependence of the normalized output light efficiencies on the control beam intensity.

Fig. 9
Fig. 9

Snap shots of Electric field distribution of the trimer in a cross section at signal light intensity of 9.68 × 10−4 W/μm and control light intensity of (a) 5.42 × 10−3 W/μm, (b) 5.42 × 10−2 W/μm and (c) 5.42 × 10−1 W/μm.

Fig. 10
Fig. 10

The on-off response time of the output electric field intensity. (a) from off to on state at 1.96 ps with control beam intensity 5.42 × 10−2, (b) from on to off state at 1.96 ps with control beam intensity 2.71 × 10−2. The intensities are taken at the observation line noted in Fig. 3.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

η [ % ] = P 1 P × 100
Δ ε = χ ( 3 ) × E × E

Metrics