Abstract

Up to a thirty-fold detectivity enhancement is achieved for an InAs quantum dot infrared photodetector (QDIP) by the excitation of surface plasma waves (SPWs) using a metal photonic crystal (MPC) integrated on top of the detector absorption region. The MPC is a 100 nm-thick gold film perforated with a 3.6 μm period square array of circular holes. A bare QDIP shows a bias-tunable broadband response from ~ 6 to 10 μm associated with the quantum confined Stark (QCS) effect. On the other hand, an MPC-integrated QDIP exhibits a dominant peak at 11.3 μm with a ~ 1 μm full width at half maximum and the highly enhanced detectivity at the bias polarity optimized for long wavelength. This is very different from the photoresponse of the bare QDIP but fully consistent with the direct coupling of the QDs in the detector absorption region to the SPWs excited at the MPC/detector interface by incident photons. The SPW resonance wavelength, λ, for the smallest coupling wavevector of the array in the MPC is close to 11.3 µm. The response also shows other SPW-coupled peaks: a significant peak at 8.1 μm (~λ/√2) and noticeable peaks at 5.8 μm (~λ/2) and 5.4 μm (~λ/√5) which correspond to higher-order coupling wavevectors. For the opposite bias, the MPC-integrated QDIP shows the highest response at 8.1 μm, providing a dramatic voltage tunability that is associated with QCS effect. SPWs propagate with TM (x, z) polarization along the MPC/detector interface. The enhanced detectivity is explained by these characteristics which increase both the effective absorption cross section with propagation and the interaction strength with TM polarization in the coupling to the QDs. Simulations show good qualitative agreement with the observed spectral behavior.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. For a recent review see,C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  2. E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
    [CrossRef]
  3. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  4. S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
    [CrossRef]
  5. A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
    [CrossRef]
  6. Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
    [CrossRef]
  7. S. C. Lee, E. Plis, S. Krishna, and S. R. J. Brueck, “Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer,” Electron. Lett. 45(12), 643–645 (2009).
    [CrossRef]
  8. D. Okamoto, J. Fijikata, K. Nishi, and K. Ohashi, “Numerical studies of near-infrared photodetectors with surface plasmon antennas for optical communications,” Jpn. J. Appl. Phys. 47(4), 2921–2923 (2008).
    [CrossRef]
  9. G. Vane and A. F. H. Goetz, “Terrestrial imaging spectroscopy,” Remote Sens. Environ. 24(1), 1–29 (1988).
    [CrossRef]
  10. J. P. Kerekes, M. K. Griffin, J. E. Baum, and K. E. Farrar, “Modeling of LWIR hyperspectral system performance for surface object and effluent detection applications.” Proc. SPIE 4381, 348 – 359 (2001).
  11. D. Manolakis and G. A. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19(1), 29–43 (2002).
    [CrossRef]
  12. A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE 4480, 500 – 514 (2002).
  13. E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
    [CrossRef]
  14. W. R. Bell, “MTI: overview,” Proc. SPIE 4381, 173–183 (2001).
  15. H. Raether, Surface Plasmons (Springer, 1988), p5–6.
  16. R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of fold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
    [CrossRef]
  17. S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
    [CrossRef]
  18. S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
    [CrossRef]
  19. E. L. Dereniak and G. D. Boreman, Infrared detectors and systems (Wiley 1996), p208.
  20. These values are lower than previously reported data. This is partly because the crosstalk between neighbor devices and the extra absorption by residual IR have been minimized for precise comparison between the two devices.
  21. B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck, and K. J. Malloy, “Metallic inductive and capacitive grids: theory and experiment,” J. Opt. Soc. Am. A 19(7), 1352–1259 (2002).
    [CrossRef]
  22. In RCWA, the propagation length, and the transverse penetration depth below, the dielectric constant of gold was calculated from a Drude model with bulk plasma and scattering frequencies [Ordal et al., Appl. Opt. 22, 1099 (1983).]. The low-temperature refractive index of GaAs ~ 3.2 for the wavelengths of interest in this work was taken for εd' of the QDIP material [J. S. Blakemore, J. Appl. Phys. 62, 4528 (1987).].
  23. S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
    [CrossRef]
  24. S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001).
    [CrossRef]

2009 (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

S. C. Lee, E. Plis, S. Krishna, and S. R. J. Brueck, “Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer,” Electron. Lett. 45(12), 643–645 (2009).
[CrossRef]

2008 (1)

D. Okamoto, J. Fijikata, K. Nishi, and K. Ohashi, “Numerical studies of near-infrared photodetectors with surface plasmon antennas for optical communications,” Jpn. J. Appl. Phys. 47(4), 2921–2923 (2008).
[CrossRef]

2007 (1)

For a recent review see,C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2006 (3)

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

2005 (1)

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

2004 (1)

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of fold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

2003 (1)

S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
[CrossRef]

2002 (3)

D. Manolakis and G. A. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19(1), 29–43 (2002).
[CrossRef]

B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck, and K. J. Malloy, “Metallic inductive and capacitive grids: theory and experiment,” J. Opt. Soc. Am. A 19(7), 1352–1259 (2002).
[CrossRef]

A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
[CrossRef]

2001 (1)

S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001).
[CrossRef]

1998 (1)

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

1988 (1)

G. Vane and A. F. H. Goetz, “Terrestrial imaging spectroscopy,” Remote Sens. Environ. 24(1), 1–29 (1988).
[CrossRef]

1985 (1)

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Agi, K.

Annamalai, S.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Ariyawansa, G.

S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
[CrossRef]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Benson, J. D.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Boucaud, P.

S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001).
[CrossRef]

Brongersma, M. L.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Brueck, S. R. J.

S. C. Lee, E. Plis, S. Krishna, and S. R. J. Brueck, “Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer,” Electron. Lett. 45(12), 643–645 (2009).
[CrossRef]

B. K. Minhas, W. Fan, K. Agi, S. R. J. Brueck, and K. J. Malloy, “Metallic inductive and capacitive grids: theory and experiment,” J. Opt. Soc. Am. A 19(7), 1352–1259 (2002).
[CrossRef]

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Brunhes, T.

S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001).
[CrossRef]

Campbell, J.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Capasso, F.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Carothers, D.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Chen, J.

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of fold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

Chen, R. L.

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of fold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

Chua, S. J.

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

Crozier, K. B.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Cubukcu, E.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Dawson, P.

A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
[CrossRef]

Diadiuk, V.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Dowd, P.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Ebbesen, T. W.

For a recent review see,C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Fan, S.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Fan, W.

Fan, W. J.

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

Fijikata, J.

D. Okamoto, J. Fijikata, K. Nishi, and K. Ohashi, “Numerical studies of near-infrared photodetectors with surface plasmon antennas for optical communications,” Jpn. J. Appl. Phys. 47(4), 2921–2923 (2008).
[CrossRef]

Finkman, E.

S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001).
[CrossRef]

Forman, D.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Genet, C.

For a recent review see,C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Gerard, J.-M.

S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001).
[CrossRef]

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Goetz, A. F. H.

G. Vane and A. F. H. Goetz, “Terrestrial imaging spectroscopy,” Remote Sens. Environ. 24(1), 1–29 (1988).
[CrossRef]

Goetz, P. M.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Gray, A.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Immer, V.

S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001).
[CrossRef]

Jensen, J. E.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Jiang, J.

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

Johnson, S. M.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Jones, T.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Kort, E. A.

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

Krishna, S.

S. C. Lee, E. Plis, S. Krishna, and S. R. J. Brueck, “Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer,” Electron. Lett. 45(12), 643–645 (2009).
[CrossRef]

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
[CrossRef]

Lee, S. C.

S. C. Lee, E. Plis, S. Krishna, and S. R. J. Brueck, “Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer,” Electron. Lett. 45(12), 643–645 (2009).
[CrossRef]

Lenth, W.

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Liu, M.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Ma, R.-M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Malloy, K. J.

Manolakis, D.

D. Manolakis and G. A. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19(1), 29–43 (2002).
[CrossRef]

Matsik, S. G.

S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
[CrossRef]

Mei, T.

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

Minhas, B. K.

Nishi, K.

D. Okamoto, J. Fijikata, K. Nishi, and K. Ohashi, “Numerical studies of near-infrared photodetectors with surface plasmon antennas for optical communications,” Jpn. J. Appl. Phys. 47(4), 2921–2923 (2008).
[CrossRef]

Nosho, B. Z.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Ohashi, K.

D. Okamoto, J. Fijikata, K. Nishi, and K. Ohashi, “Numerical studies of near-infrared photodetectors with surface plasmon antennas for optical communications,” Jpn. J. Appl. Phys. 47(4), 2921–2923 (2008).
[CrossRef]

Okamoto, D.

D. Okamoto, J. Fijikata, K. Nishi, and K. Ohashi, “Numerical studies of near-infrared photodetectors with surface plasmon antennas for optical communications,” Jpn. J. Appl. Phys. 47(4), 2921–2923 (2008).
[CrossRef]

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Patten, E. A.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Perera, A. G. U.

S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
[CrossRef]

Plis, E.

S. C. Lee, E. Plis, S. Krishna, and S. R. J. Brueck, “Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer,” Electron. Lett. 45(12), 643–645 (2009).
[CrossRef]

Qiang, R.

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of fold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

Radford, W. A.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Raghavan, S.

S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
[CrossRef]

Roth, J. A.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Sauvage, S.

S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001).
[CrossRef]

Sellai, A.

A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
[CrossRef]

Shaw, G. A.

D. Manolakis and G. A. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19(1), 29–43 (2002).
[CrossRef]

Smith, E. P. G.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Stintz, A.

S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
[CrossRef]

Stoltz, A. J.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Sun, K.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Tumolillo, T.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Vane, G.

G. Vane and A. F. H. Goetz, “Terrestrial imaging spectroscopy,” Remote Sens. Environ. 24(1), 1–29 (1988).
[CrossRef]

Varangis, P.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Varesi, J. B.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Venzor, G. M.

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

Veronis, G.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

von Winckel, G.

S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
[CrossRef]

Wang, C. H.

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

Wang, X. C.

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

Xie, X. G.

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

Xu, S. J.

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

Yu, Z.

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X. H.

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

Zilko, J.

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

Appl. Phys. Lett. (7)

E. Cubukcu, E. A. Kort, K. B. Crozier, and F. Capasso, “Plasmonic laser antenna,” Appl. Phys. Lett. 89(9), 093120 (2006).
[CrossRef]

S. R. J. Brueck, V. Diadiuk, T. Jones, and W. Lenth, “Enhanced quantum efficiency internal photoemission detectors by grating coupling to surface plasma waves,” Appl. Phys. Lett. 46(10), 915–917 (1985).
[CrossRef]

Z. Yu, G. Veronis, S. Fan, and M. L. Brongersma, “Design of midinfrared photodetectors enhanced by surface plasmons on grating structures,” Appl. Phys. Lett. 89(15), 151116 (2006).
[CrossRef]

S. Krishna, S. Raghavan, G. von Winckel, A. Stintz, G. Ariyawansa, S. G. Matsik, and A. G. U. Perera, “Three-color (λp1~3.8 μm, λp2~ 8.5 μm and λp3~23.2 μm) InAs/InGaAs quantum-dots-in-a-well detector,” Appl. Phys. Lett. 83(14), 2745–2747 (2003).
[CrossRef]

S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, A. Gray, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, “Demonstration of a 320 x 256 Two-Color Focal Plane Array Using InAs/InGaAs Quantum Dots in a Well Detectors,” Appl. Phys. Lett. 86(19), 193501 (2005).
[CrossRef]

S. J. Chua, S. J. Xu, X. H. Zhang, X. C. Wang, T. Mei, W. J. Fan, C. H. Wang, J. Jiang, and X. G. Xie, “Polarization dependence of intraband absorption in self-organized quantum dots,” Appl. Phys. Lett. 73(14), 1997–1999 (1998).
[CrossRef]

S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, “Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots,” Appl. Phys. Lett. 78(16), 2327–2329 (2001).
[CrossRef]

Electron. Lett. (1)

S. C. Lee, E. Plis, S. Krishna, and S. R. J. Brueck, “Mid-infrared transmission enhancement through sub-wavelength metal hole array using impedance-matching dielectric layer,” Electron. Lett. 45(12), 643–645 (2009).
[CrossRef]

IEEE Signal Process. Mag. (1)

D. Manolakis and G. A. Shaw, “Detection algorithms for hyperspectral imaging applications,” IEEE Signal Process. Mag. 19(1), 29–43 (2002).
[CrossRef]

Int. J. Infrared Millim. Waves (1)

R. Qiang, R. L. Chen, and J. Chen, “Modeling electrical properties of fold films at infrared frequency using FDTD method,” Int. J. Infrared Millim. Waves 25(8), 1263–1270 (2004).
[CrossRef]

J. Electron. Mater. (1)

E. P. G. Smith, E. A. Patten, P. M. Goetz, G. M. Venzor, J. A. Roth, B. Z. Nosho, J. D. Benson, A. J. Stoltz, J. B. Varesi, J. E. Jensen, S. M. Johnson, and W. A. Radford, “Fabrication and Characterization of Two-Color Midwavelength/Long Wavelength HgCdTe Infrared Detectors,” J. Electron. Mater. 35(6), 1145–1152 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Appl. Phys. (1)

D. Okamoto, J. Fijikata, K. Nishi, and K. Ohashi, “Numerical studies of near-infrared photodetectors with surface plasmon antennas for optical communications,” Jpn. J. Appl. Phys. 47(4), 2921–2923 (2008).
[CrossRef]

Nature (2)

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009).
[CrossRef] [PubMed]

For a recent review see,C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Remote Sens. Environ. (1)

G. Vane and A. F. H. Goetz, “Terrestrial imaging spectroscopy,” Remote Sens. Environ. 24(1), 1–29 (1988).
[CrossRef]

Solid-State Electron. (1)

A. Sellai and P. Dawson, “Quantum efficiency in GaAs Schottky photodetectors with enhancement due to surface plasmon excitations,” Solid-State Electron. 46(1), 29–33 (2002).
[CrossRef]

Other (7)

J. P. Kerekes, M. K. Griffin, J. E. Baum, and K. E. Farrar, “Modeling of LWIR hyperspectral system performance for surface object and effluent detection applications.” Proc. SPIE 4381, 348 – 359 (2001).

W. R. Bell, “MTI: overview,” Proc. SPIE 4381, 173–183 (2001).

H. Raether, Surface Plasmons (Springer, 1988), p5–6.

A. C. Goldberg, T. Fischer, and Z. I. Derzko, “Application of dual band infrared focal plane arrays to tactical and strategic military problems,” Proc. SPIE 4480, 500 – 514 (2002).

E. L. Dereniak and G. D. Boreman, Infrared detectors and systems (Wiley 1996), p208.

These values are lower than previously reported data. This is partly because the crosstalk between neighbor devices and the extra absorption by residual IR have been minimized for precise comparison between the two devices.

In RCWA, the propagation length, and the transverse penetration depth below, the dielectric constant of gold was calculated from a Drude model with bulk plasma and scattering frequencies [Ordal et al., Appl. Opt. 22, 1099 (1983).]. The low-temperature refractive index of GaAs ~ 3.2 for the wavelengths of interest in this work was taken for εd' of the QDIP material [J. S. Blakemore, J. Appl. Phys. 62, 4528 (1987).].

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Optical microscope images of the MPC device (left) and with 16× higher magnification revealing the details of the MPC (right). The period of the circular holes is 3.6 µm. (b) A schematic cross sectional structure of the MPC device.

Fig. 2
Fig. 2

(a) Spectral response curves of the reference device (two spectra at the bottom with the arrows indicating the highest peak in each spectrum) and the MPC device (other two spectra with higher responsivity) for −3.0 V and 3.4 V at 10 K. (b) Spectral response curves of the 3.6 and 2.5 µm-period MPC devices for −4.0 V and 4.4 V at 10 K. Each spectrum was normalized by its highest peak intensity. Note that the spectra of the shorter period MPC device are offset for clarity.

Fig. 3
Fig. 3

(a) I-V characteristics, (b) responsivity, and (c) detectivity of the 3.6 μm-period MPC and the reference device at 10K.

Fig. 4
Fig. 4

(a) Calculated normal-incidence absorption spectrum (= 1- R - T with reflection, R, and transmission, T) from a RCWA simulation for the MPC. (b) Spectral response curves of the reference device in Fig. 2(a) weighted by the SPW coupling from the RCWA simulation in (a). See the text for details. (c) A schematic illustration for the model proposed in this work (not scaled). The top illustration is the cross section view of a QDIP with no MPC and the bottom is that of the same QDIP with an MPC. Only two QD stacks are shown for clarity. (d) A plot of propagation length (L sp) as a function of the QD absorption. The four wavelengths in this plot correspond to the SPW resonance wavelengths in Table 1. The two vertical dashed lines indicate ~2% (left) absorption (measured for a single transit through the active region) and the 5 × enhanced absorption (right) estimated for TM polarization. See the text for details.

Tables (1)

Tables Icon

Table 1 Summary of measurement and modeling.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ i j = p i 2 + j 2 Re { [ ε m ε d ε m + ε d ] 1 / 2 } ,
L s p ~ λ π 1 ε d " ε d ' ( 1 ε d ' ε m ' ) + ε m " ε d ' ( ε m ' ) 2   and   δ s p ~ λ 2 π ε m ' + ε d ' ε d ' 2 .

Metrics