Abstract

We demonstrate a compact and stable source of polarization-entangled pairs of photons, one at 810 nm wavelength for high detection efficiency and the other at 1550 nm for long-distance fiber communication networks. Due to a novel Sagnac-based design of the interferometer no active stabilization is needed. Using only one 30 mm ppKTP bulk crystal the source produces photons with a spectral brightness of 1.13 × 106 pairs/s/mW/THz with an entanglement fidelity of 98.2%. Both photons are single-mode fiber coupled and ready to be used in quantum key distribution (QKD) or transmission of photonic quantum states over large distances.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
    [CrossRef] [PubMed]
  2. E. J. Mason, M. A. Albota, F. König, and F. N. Wong, “Efficient generation of tunable photon pairs at 0.8 and 1.6 microm,” Opt. Lett. 27(23), 2115–2117 (2002).
    [CrossRef] [PubMed]
  3. S. M. Spillane, M. Fiorentino, and R. G. Beausoleil, “Spontaneous parametric down conversion in a nanophotonic waveguide,” Opt. Express 15(14), 8770–8780 (2007).
    [CrossRef] [PubMed]
  4. S. Zhang, J. Yao, W. Liu, Z. Huang, J. Wang, Y. Li, C. Tu, and F. Lu, “Second harmonic generation of periodically poled potassium titanyl phosphate waveguide using femtosecond laser pulses,” Opt. Express 16(18), 14180–14185 (2008).
    [CrossRef] [PubMed]
  5. G. Ribordy, J. Brendel, J. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63(1), 012309 (2000).
    [CrossRef]
  6. A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
    [CrossRef]
  7. D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72(6), 062301 (2005).
    [CrossRef]
  8. H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
    [CrossRef] [PubMed]
  9. A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
    [CrossRef] [PubMed]
  10. S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, “A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths,” Opt. Express 16(13), 9701–9707 (2008).
    [CrossRef] [PubMed]
  11. Schott optical glass catalogue.
  12. D. James, P. Kwiat, W. Munro, and A. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
    [CrossRef]

2009 (1)

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

2008 (2)

2007 (3)

2005 (1)

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72(6), 062301 (2005).
[CrossRef]

2002 (1)

2001 (1)

D. James, P. Kwiat, W. Munro, and A. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[CrossRef]

2000 (1)

G. Ribordy, J. Brendel, J. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63(1), 012309 (2000).
[CrossRef]

1995 (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Albota, M. A.

Beausoleil, R. G.

Blauensteiner, B.

Brendel, J.

G. Ribordy, J. Brendel, J. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63(1), 012309 (2000).
[CrossRef]

Fedrizzi, A.

Ferrini, D.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

Fiorentino, M.

Gautier, J.

G. Ribordy, J. Brendel, J. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63(1), 012309 (2000).
[CrossRef]

Gisin, N.

G. Ribordy, J. Brendel, J. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63(1), 012309 (2000).
[CrossRef]

Hentschel, M.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

Herbst, T.

Huang, Z.

Hübel, H.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
[CrossRef] [PubMed]

James, D.

D. James, P. Kwiat, W. Munro, and A. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[CrossRef]

Jennewein, T.

Karlsson, A.

König, F.

Kwiat, P.

D. James, P. Kwiat, W. Munro, and A. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[CrossRef]

Kwiat, P. G.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Lederer, T.

Li, Y.

Liu, W.

Ljunggren, D.

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72(6), 062301 (2005).
[CrossRef]

Lorünser, T.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
[CrossRef] [PubMed]

Lu, F.

Mason, E. J.

Mattle, K.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Matyus, T.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

Munro, W.

D. James, P. Kwiat, W. Munro, and A. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[CrossRef]

Poppe, A.

Querasser, E.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

Ribordy, G.

G. Ribordy, J. Brendel, J. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63(1), 012309 (2000).
[CrossRef]

Sauge, S.

Sergienko, A. V.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Shih, Y.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Spillane, S. M.

Swillo, M.

Tengner, M.

S. Sauge, M. Swillo, M. Tengner, and A. Karlsson, “A single-crystal source of path-polarization entangled photons at non-degenerate wavelengths,” Opt. Express 16(13), 9701–9707 (2008).
[CrossRef] [PubMed]

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72(6), 062301 (2005).
[CrossRef]

Treiber, A.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

Tu, C.

Vanner, M. R.

Wang, J.

Weinfurter, H.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

White, A.

D. James, P. Kwiat, W. Munro, and A. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[CrossRef]

Wong, F. N.

Yao, J.

Zbinden, H.

G. Ribordy, J. Brendel, J. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63(1), 012309 (2000).
[CrossRef]

Zeilinger, A.

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

H. Hübel, M. R. Vanner, T. Lederer, B. Blauensteiner, T. Lorünser, A. Poppe, and A. Zeilinger, “High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fiber,” Opt. Express 15(12), 7853–7862 (2007).
[CrossRef] [PubMed]

A. Fedrizzi, T. Herbst, A. Poppe, T. Jennewein, and A. Zeilinger, “A wavelength-tunable fiber-coupled source of narrowband entangled photons,” Opt. Express 15(23), 15377–15386 (2007).
[CrossRef] [PubMed]

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Zhang, S.

N. J. Phys. (1)

A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” N. J. Phys. 11(4), 045013 (2009).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Phys. Rev. A (3)

G. Ribordy, J. Brendel, J. Gautier, N. Gisin, and H. Zbinden, “Long-distance entanglement-based quantum key distribution,” Phys. Rev. A 63(1), 012309 (2000).
[CrossRef]

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A 72(6), 062301 (2005).
[CrossRef]

D. James, P. Kwiat, W. Munro, and A. White, “Measurement of qubits,” Phys. Rev. A 64(5), 052312 (2001).
[CrossRef]

Phys. Rev. Lett. (1)

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995).
[CrossRef] [PubMed]

Other (1)

Schott optical glass catalogue.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of the Sagnac interferometer. Depending on the polarization of the entering pump photon (green) the loop is passed in either clockwise (a) or counterclockwise (b) direction. The pump photons are transformed into signal (red) and idler (purple) by SPDC. The pump or the signal and idler photons are polarization flipped in cases a and b, respectively.

Fig. 2
Fig. 2

Schematic of the source: half-wave plate (HWP), quartz wedges (QW), quartz block (QB), focusing lens (L), trichroic mirror (TM), calcite block (CB), Glan-Thompson polarizer (GT), parallel-faced periscope (P1), cross-faced periscope (P2), periodically poled Potassium Titanium Oxide Phosphate crystal (ppKTP), dichroic mirror (DM), fiber couplers (FC1 & FC2). Insert left: principle of operation of the two periscopes. Insert right: 3-dimensional view of the implemented interferometer.

Fig. 3
Fig. 3

Setup for efficiency measurement and quantum state tomography. The signal photon at 810 nm is detected by a Si-APD detector. A trigger signal is sent to an InGaAs-APD detector where the appropriately delayed 1550 nm idler photon can be detected. Quarter-wave plates and polarizers in both arms are used for the characterization of the polarization state.

Fig. 4
Fig. 4

Real and imaginary part of the reconstructed density matrix of the measured state. Accidental coincidences and dark counts have been subtracted.

Tables (1)

Tables Icon

Table 1 Refractive index, its temperature dependence and thermal expansion coefficient of BK7-glass.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

| φ = 1 2 ( | H | H + e i ( Φ 0 + Δ Φ ) | V | V ) ,
Δ Φ = Δ ϕ s + Δ ϕ i Δ ϕ p .
Δ ϕ x = 2 π L λ x ( d n x d T + n x α ) Δ T ,

Metrics