Abstract

A multi-wavelength tunable fiber laser based on the use of an Opto-VLSI processor in conjunction with different optical amplifiers is proposed and experimentally demonstrated. The Opto-VLSI processor can simultaneously select any part of the gain spectrum from each optical amplifier into its associated fiber ring, leading to a multiport tunable fiber laser source. We experimentally demonstrate a 3-port tunable fiber laser source, where each output wavelength of each port can independently be tuned within the C-band with a wavelength step of about 0.05nm. Experimental results demonstrate a laser linewidth as narrow as 0.05 nm and an optical side-mode-suppression-ratio (SMSR) of about 35 dB. The demonstrated three fiber lasers have excellent stability at room temperature and output power uniformity less than 0.5 dB over the whole C-band.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bellemare, “Continuous-wave silica-based erbium-doped fiber lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
    [CrossRef]
  2. M. A. Ummy, N. Madamopoulos, P. Lama, and R. Dorsinville, “Dual Sagnac loop mirror SOA-based widely tunable dual-output port fiber laser,” Opt. Express 17(17), 14495–14501 (2009).
    [CrossRef] [PubMed]
  3. Q. Wang, Y. Wang, W. Zhang, X. Feng, X. M. Liu, and B. K. Zhou, “Inhomogeneous loss mechanism in multiwavelength fiber Raman ring lasers,” Opt. Lett. 30(9), 952–954 (2005).
    [CrossRef] [PubMed]
  4. S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
    [CrossRef]
  5. A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
    [CrossRef]
  6. J. Yao, J. P. Yao, Z. C. Deng, and J. Liu, “Investigation of room-temperature multiwavelength fiber-ring laser that incorporates an SOA-beased phase modulator in the laser cavity,” J. Lightwave Technol. 23(8), 2484–2490 (2005).
    [CrossRef]
  7. P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
    [CrossRef]
  8. S. Qin, D. Chen, Y. B. Tang, and S. L. He, “Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains,” Opt. Express 14(22), 10522–10527 (2006).
    [CrossRef] [PubMed]
  9. V. Roy, M. Piché, F. Babin, and G. W. Schinn, “Nonlinear wave mixing in a multilongitudinal-mode erbium-doped fiber laser,” Opt. Express 13(18), 6791–6797 (2005).
    [CrossRef] [PubMed]
  10. S. L. Pan, C. Y. Lou, and Y. Z. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter,” Opt. Express 14(3), 1113–1118 (2006).
    [CrossRef] [PubMed]
  11. Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express 12(10), 2056–2061 (2004).
    [CrossRef] [PubMed]
  12. D. S. Moon, U. C. Paek, and Y. Chung, “Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core,” Opt. Express 13(14), 5574–5579 (2005).
    [CrossRef] [PubMed]
  13. T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, “A multiwavelength fiber ring-laser employing a pair of silica-based array-waveguide-gratings,” IEEE Photon. Technol. Lett. 9(7), 910–912 (1997).
    [CrossRef]
  14. M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stultz, and H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8(7), 870–872 (1996).
    [CrossRef]
  15. F. Xiao, B. Juswardy, K. Alameh, and Y. T. Lee, “Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors,” Opt. Express 16(16), 11703–11708 (2008).
    [CrossRef] [PubMed]
  16. I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, “Reconfigurable multilevel phase holograms for Optical switches,” IEEE Photon. Technol. Lett. 14(6), 801–803 (2002).
    [CrossRef]
  17. A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
    [CrossRef]
  18. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
    [CrossRef]
  19. M. Prabhu, N. S. Kim, and K. Ueda, “Simultaneous Double-Color Continuous Wave Raman Fiber Laser at 1239 nm and 1484 nm Using Phosphosilicate Fiber,” Opt. Rev. 7(4), 277–280 (2000).
    [CrossRef]

2009 (1)

2008 (1)

2006 (3)

2005 (4)

2004 (1)

2003 (1)

A. Bellemare, “Continuous-wave silica-based erbium-doped fiber lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
[CrossRef]

2002 (1)

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, “Reconfigurable multilevel phase holograms for Optical switches,” IEEE Photon. Technol. Lett. 14(6), 801–803 (2002).
[CrossRef]

2001 (1)

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
[CrossRef]

2000 (2)

M. Prabhu, N. S. Kim, and K. Ueda, “Simultaneous Double-Color Continuous Wave Raman Fiber Laser at 1239 nm and 1484 nm Using Phosphosilicate Fiber,” Opt. Rev. 7(4), 277–280 (2000).
[CrossRef]

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
[CrossRef]

1997 (1)

T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, “A multiwavelength fiber ring-laser employing a pair of silica-based array-waveguide-gratings,” IEEE Photon. Technol. Lett. 9(7), 910–912 (1997).
[CrossRef]

1996 (3)

M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stultz, and H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8(7), 870–872 (1996).
[CrossRef]

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Akiba, S.

T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, “A multiwavelength fiber ring-laser employing a pair of silica-based array-waveguide-gratings,” IEEE Photon. Technol. Lett. 9(7), 910–912 (1997).
[CrossRef]

Alameh, K.

Babin, F.

V. Roy, M. Piché, F. Babin, and G. W. Schinn, “Nonlinear wave mixing in a multilongitudinal-mode erbium-doped fiber laser,” Opt. Express 13(18), 6791–6797 (2005).
[CrossRef] [PubMed]

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
[CrossRef]

Bellemare, A.

A. Bellemare, “Continuous-wave silica-based erbium-doped fiber lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
[CrossRef]

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
[CrossRef]

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
[CrossRef]

Chang, C. C.

P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
[CrossRef]

Chen, D.

Chen, J. H.

P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
[CrossRef]

Chi, S.

P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
[CrossRef]

Chien, H. C.

P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
[CrossRef]

Chiou, H. Y.

P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
[CrossRef]

Chung, Y.

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Crossland, W. A.

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, “Reconfigurable multilevel phase holograms for Optical switches,” IEEE Photon. Technol. Lett. 14(6), 801–803 (2002).
[CrossRef]

Deng, Z. C.

Doerr, C. R.

M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stultz, and H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8(7), 870–872 (1996).
[CrossRef]

Dong, X.

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Dorsinville, R.

Edagawa, N.

T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, “A multiwavelength fiber ring-laser employing a pair of silica-based array-waveguide-gratings,” IEEE Photon. Technol. Lett. 9(7), 910–912 (1997).
[CrossRef]

Feng, K. M.

P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
[CrossRef]

Feng, X.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Gao, Y. Z.

He, G.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
[CrossRef]

He, S. L.

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Hotate, K.

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

Huang, M. F.

P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
[CrossRef]

Joyner, C. H.

M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stultz, and H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8(7), 870–872 (1996).
[CrossRef]

Juswardy, B.

Kai, G.

Karasek, M.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
[CrossRef]

A. Bellemare, M. Karasek, M. Rochette, S. LaRochelle, and M. Tetu, “Room temperature multifrequency erbium-doped fiber lasers anchored on the ITU frequency grid,” J. Lightwave Technol. 18(6), 825–831 (2000).
[CrossRef]

Kim, N. S.

M. Prabhu, N. S. Kim, and K. Ueda, “Simultaneous Double-Color Continuous Wave Raman Fiber Laser at 1239 nm and 1484 nm Using Phosphosilicate Fiber,” Opt. Rev. 7(4), 277–280 (2000).
[CrossRef]

Lama, P.

LaRochelle, S.

Lee, Y. T.

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Liu, J.

Liu, X. M.

Liu, Y.

Lou, C. Y.

Madamopoulos, N.

Manolis, I. G.

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, “Reconfigurable multilevel phase holograms for Optical switches,” IEEE Photon. Technol. Lett. 14(6), 801–803 (2002).
[CrossRef]

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Miyazaki, T.

T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, “A multiwavelength fiber ring-laser employing a pair of silica-based array-waveguide-gratings,” IEEE Photon. Technol. Lett. 9(7), 910–912 (1997).
[CrossRef]

Moon, D. S.

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Paek, U. C.

Pan, S. L.

Peng, P. C.

P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
[CrossRef]

Piché, M.

Prabhu, M.

M. Prabhu, N. S. Kim, and K. Ueda, “Simultaneous Double-Color Continuous Wave Raman Fiber Laser at 1239 nm and 1484 nm Using Phosphosilicate Fiber,” Opt. Rev. 7(4), 277–280 (2000).
[CrossRef]

Presby, H. M.

M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stultz, and H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8(7), 870–872 (1996).
[CrossRef]

Qin, S.

Redmond, M. M.

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, “Reconfigurable multilevel phase holograms for Optical switches,” IEEE Photon. Technol. Lett. 14(6), 801–803 (2002).
[CrossRef]

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Riviere, C.

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
[CrossRef]

Rochette, M.

Roy, V.

V. Roy, M. Piché, F. Babin, and G. W. Schinn, “Nonlinear wave mixing in a multilongitudinal-mode erbium-doped fiber laser,” Opt. Express 13(18), 6791–6797 (2005).
[CrossRef] [PubMed]

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
[CrossRef]

Schinn, G. W.

V. Roy, M. Piché, F. Babin, and G. W. Schinn, “Nonlinear wave mixing in a multilongitudinal-mode erbium-doped fiber laser,” Opt. Express 13(18), 6791–6797 (2005).
[CrossRef] [PubMed]

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
[CrossRef]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Stultz, L. W.

M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stultz, and H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8(7), 870–872 (1996).
[CrossRef]

Tang, Y. B.

Tetu, M.

Ueda, K.

M. Prabhu, N. S. Kim, and K. Ueda, “Simultaneous Double-Color Continuous Wave Raman Fiber Laser at 1239 nm and 1484 nm Using Phosphosilicate Fiber,” Opt. Rev. 7(4), 277–280 (2000).
[CrossRef]

Ummy, M. A.

Wang, Q.

Wang, Y.

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Wilkinson, T. D.

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, “Reconfigurable multilevel phase holograms for Optical switches,” IEEE Photon. Technol. Lett. 14(6), 801–803 (2002).
[CrossRef]

Xiao, F.

Yamamoto, S.

T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, “A multiwavelength fiber ring-laser employing a pair of silica-based array-waveguide-gratings,” IEEE Photon. Technol. Lett. 9(7), 910–912 (1997).
[CrossRef]

Yamashita, S.

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

Yao, J.

Yao, J. P.

Yuan, S.

Zhang, W.

Zhou, B. K.

Zirngibl, M.

M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stultz, and H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8(7), 870–872 (1996).
[CrossRef]

Electron. Lett. (1)

S. Yamashita and K. Hotate, “Multiwavelength erbium-doped fibre laser using intracavity etalon and cooled by liquid nitrogen,” Electron. Lett. 32(14), 1298–1299 (1996).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Bellemare, M. Karasek, C. Riviere, F. Babin, G. He, V. Roy, and G. W. Schinn, “A broadly tunable Erbium-doped fiber ring laser: experimentation and modeling,” IEEE J. Sel. Top. Quantum Electron. 7(1), 22–29 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

T. Miyazaki, N. Edagawa, S. Yamamoto, and S. Akiba, “A multiwavelength fiber ring-laser employing a pair of silica-based array-waveguide-gratings,” IEEE Photon. Technol. Lett. 9(7), 910–912 (1997).
[CrossRef]

M. Zirngibl, C. H. Joyner, C. R. Doerr, L. W. Stultz, and H. M. Presby, “An 18-channel multifrequency laser,” IEEE Photon. Technol. Lett. 8(7), 870–872 (1996).
[CrossRef]

I. G. Manolis, T. D. Wilkinson, M. M. Redmond, and W. A. Crossland, “Reconfigurable multilevel phase holograms for Optical switches,” IEEE Photon. Technol. Lett. 14(6), 801–803 (2002).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

P. C. Peng, K. M. Feng, C. C. Chang, H. Y. Chiou, J. H. Chen, M. F. Huang, H. C. Chien, and S. Chi, “Multiwavelength fiber laser using S-band erbium-doped fiber amplifier and semiconductor optical amplifier,” Opt. Commun. 259(1), 200–203 (2006).
[CrossRef]

Opt. Express (7)

S. L. Pan, C. Y. Lou, and Y. Z. Gao, “Multiwavelength erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter,” Opt. Express 14(3), 1113–1118 (2006).
[CrossRef] [PubMed]

S. Qin, D. Chen, Y. B. Tang, and S. L. He, “Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains,” Opt. Express 14(22), 10522–10527 (2006).
[CrossRef] [PubMed]

F. Xiao, B. Juswardy, K. Alameh, and Y. T. Lee, “Novel broadband reconfigurable optical add-drop multiplexer employing custom fiber arrays and Opto-VLSI processors,” Opt. Express 16(16), 11703–11708 (2008).
[CrossRef] [PubMed]

M. A. Ummy, N. Madamopoulos, P. Lama, and R. Dorsinville, “Dual Sagnac loop mirror SOA-based widely tunable dual-output port fiber laser,” Opt. Express 17(17), 14495–14501 (2009).
[CrossRef] [PubMed]

Y. Liu, X. Feng, S. Yuan, G. Kai, and X. Dong, “Simultaneous four-wavelength lasing oscillations in an erbium-doped fiber laser with two high birefringence fiber Bragg gratings,” Opt. Express 12(10), 2056–2061 (2004).
[CrossRef] [PubMed]

D. S. Moon, U. C. Paek, and Y. Chung, “Polarization controlled multi-wavelength Er-doped fiber laser using fiber Bragg grating written in few-mode side-hole fiber with an elliptical core,” Opt. Express 13(14), 5574–5579 (2005).
[CrossRef] [PubMed]

V. Roy, M. Piché, F. Babin, and G. W. Schinn, “Nonlinear wave mixing in a multilongitudinal-mode erbium-doped fiber laser,” Opt. Express 13(18), 6791–6797 (2005).
[CrossRef] [PubMed]

Opt. Lett. (1)

Opt. Rev. (1)

M. Prabhu, N. S. Kim, and K. Ueda, “Simultaneous Double-Color Continuous Wave Raman Fiber Laser at 1239 nm and 1484 nm Using Phosphosilicate Fiber,” Opt. Rev. 7(4), 277–280 (2000).
[CrossRef]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, and E. A. Watson, “Optical phased array technology,” Proc. IEEE 84(2), 268–298 (1996).
[CrossRef]

Prog. Quantum Electron. (1)

A. Bellemare, “Continuous-wave silica-based erbium-doped fiber lasers,” Prog. Quantum Electron. 27(4), 211–266 (2003).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The proposed multi-wavelength tunable fiber laser structure.

Fig. 2
Fig. 2

Measured responses of the Opto-VLSI-based 3-wavelength fiber laser for coarse tuning operation over C-band. These three channels can independently and simultaneously be tuned over the whole C-band.

Fig. 3
Fig. 3

The measured output power fluctuations at Port 2 for a lasing wavelength of 1550 nm.

Fig. 4
Fig. 4

Fine tuning operation for each channel of the Opto-VLSI-based 3-wavelength tunable fiber laser. The minimum tuning step was 0.05 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α m = arcsin ( m λ d )

Metrics