Abstract

The availability of a real-time non-destructive modality to interrogate the mechanical properties of viscoelastic materials would facilitate many new investigations. We introduce a new optical method for measuring elastic properties of samples which employs magnetite nanoparticles as perturbative agents. Magnetic nanoparticles distributed in silicone-based samples are displaced upon probing with a small external magnetic field gradient and depth-resolved optical coherence phase shifts allow for the tracking of scatterers in the sample with nanometer-scale sensitivity. The scatterers undergo underdamped oscillations when the magnetic field is applied step-wise, allowing for the measurement of the natural frequencies of oscillation of the samples. Validation of the measurements is accomplished using a commercial indentation apparatus to determine the elastic moduli of the samples. This real-time non-destructive technique constitutes a novel way of probing the natural frequencies of viscoelastic materials in which magnetic nanoparticles can be introduced.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. W. Tschoegl, The phenomenological theory of linear viscoelastic behavior: an introduction (Springer-Verlag, 1989).
  2. A. Wineman, and K. Rajagopal, Mechanical Response of Polymers (Cambridge University Press, 2000).
  3. J. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, 1980).
  4. D. Ouis, “Characterization of polymers by means of a standard viscoelastic model and fractional derivative calculus,” Int. J. Polym. Mater. 53(8), 633–644 (2004).
    [CrossRef]
  5. M. Sridhar, J. Liu, and M. F. Insana, “Elasticity imaging of polymeric media,” J. Biomech. Eng. 129(2), 259–272 (2007).
    [CrossRef] [PubMed]
  6. J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
    [CrossRef] [PubMed]
  7. J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
    [CrossRef]
  8. I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imaging 15(2), 73–88 (1993).
    [CrossRef] [PubMed]
  9. R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
    [CrossRef] [PubMed]
  10. A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
    [CrossRef] [PubMed]
  11. A. J. Romano, J. A. Bucaro, R. L. Ehnan, and J. J. Shirron, “Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1575–1581 (2000).
    [CrossRef] [PubMed]
  12. R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
    [CrossRef] [PubMed]
  13. O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov, “Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium,” J. Acoust. Soc. Am. 99(5), 2791–2798 (1996).
    [CrossRef]
  14. S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3 Pt 1), 884–889 (2002).
    [CrossRef] [PubMed]
  15. C. Reynaud, F. Sommer, C. Quet, N. El Bounia, and T. M. Duc, “Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy,” Surf. Interface Anal. 30(1), 185–189 (2000).
    [CrossRef]
  16. J. M. Schmitt, “OCT elastography: imaging microscopic deformation and strain of tissue,” Opt. Express 3(6), 199–211 (1998).
    [CrossRef] [PubMed]
  17. A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
    [CrossRef] [PubMed]
  18. G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
    [CrossRef] [PubMed]
  19. J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
    [CrossRef] [PubMed]
  20. H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
    [CrossRef] [PubMed]
  21. R. K. Wang, S. J. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
    [CrossRef]
  22. S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
    [CrossRef] [PubMed]
  23. A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, “Imaging magnetically labeled cells with magnetomotive optical coherence tomography,” Opt. Lett. 30(7), 747–749 (2005).
    [CrossRef] [PubMed]
  24. E. P. Furlani, “Magnetophoretic separation of blood cells at the microscale,” J. Phys. D Appl. Phys. 40(5), 1313–1319 (2007).
    [CrossRef]
  25. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  26. A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).
    [CrossRef] [PubMed]
  27. V. Crecea, A. L. Oldenburg, T. S. Ralston, and S. A. Boppart, “Phase-resolved spectral-domain magnetomotive optical coherence tomography,” Proc. SPIE 6429, 64291X (2007).
    [CrossRef]
  28. A. L. Oldenburg, V. Crecea, S. A. Rinne, and S. A. Boppart, “Phase-resolved magnetomotive OCT for imaging nanomolar concentrations of magnetic nanoparticles in tissues,” Opt. Express 16(15), 11525–11539 (2008).
    [PubMed]
  29. D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007).
    [CrossRef] [PubMed]
  30. A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51(9), 2165–2177 (2006).
    [CrossRef] [PubMed]
  31. D. Valtorta and E. Mazza, “Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device,” Med. Image Anal. 9(5), 481–490 (2005).
    [CrossRef] [PubMed]
  32. X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
    [CrossRef] [PubMed]
  33. A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
    [CrossRef] [PubMed]
  34. P. Agache, and P. Humbert, Measuring the skin (Springer-Verlag, 2004).

2008 (2)

2007 (6)

V. Crecea, A. L. Oldenburg, T. S. Ralston, and S. A. Boppart, “Phase-resolved spectral-domain magnetomotive optical coherence tomography,” Proc. SPIE 6429, 64291X (2007).
[CrossRef]

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007).
[CrossRef] [PubMed]

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[CrossRef]

E. P. Furlani, “Magnetophoretic separation of blood cells at the microscale,” J. Phys. D Appl. Phys. 40(5), 1313–1319 (2007).
[CrossRef]

M. Sridhar, J. Liu, and M. F. Insana, “Elasticity imaging of polymeric media,” J. Biomech. Eng. 129(2), 259–272 (2007).
[CrossRef] [PubMed]

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

2006 (3)

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51(9), 2165–2177 (2006).
[CrossRef] [PubMed]

2005 (5)

D. Valtorta and E. Mazza, “Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device,” Med. Image Anal. 9(5), 481–490 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, J. R. Gunther, and S. A. Boppart, “Imaging magnetically labeled cells with magnetomotive optical coherence tomography,” Opt. Lett. 30(7), 747–749 (2005).
[CrossRef] [PubMed]

A. L. Oldenburg, F. J. J. Toublan, K. S. Suslick, A. Wei, and S. A. Boppart, “Magnetomotive contrast for in vivo optical coherence tomography,” Opt. Express 13(17), 6597–6614 (2005).
[CrossRef] [PubMed]

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[CrossRef] [PubMed]

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

D. Ouis, “Characterization of polymers by means of a standard viscoelastic model and fractional derivative calculus,” Int. J. Polym. Mater. 53(8), 633–644 (2004).
[CrossRef]

2003 (3)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

2002 (2)

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3 Pt 1), 884–889 (2002).
[CrossRef] [PubMed]

2001 (1)

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

2000 (2)

A. J. Romano, J. A. Bucaro, R. L. Ehnan, and J. J. Shirron, “Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1575–1581 (2000).
[CrossRef] [PubMed]

C. Reynaud, F. Sommer, C. Quet, N. El Bounia, and T. M. Duc, “Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy,” Surf. Interface Anal. 30(1), 185–189 (2000).
[CrossRef]

1998 (1)

1996 (1)

O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov, “Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium,” J. Acoust. Soc. Am. 99(5), 2791–2798 (1996).
[CrossRef]

1995 (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

1993 (1)

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imaging 15(2), 73–88 (1993).
[CrossRef] [PubMed]

Adler, D. C.

Alam, S. K.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Amromin, E.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

Bishop, J.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

Boppart, S. A.

Bouma, B. E.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[CrossRef] [PubMed]

Brezinski, M. E.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

Bucaro, J. A.

A. J. Romano, J. A. Bucaro, R. L. Ehnan, and J. J. Shirron, “Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1575–1581 (2000).
[CrossRef] [PubMed]

Catheline, S.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
[CrossRef] [PubMed]

Céspedes, I.

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imaging 15(2), 73–88 (1993).
[CrossRef] [PubMed]

Chan, R. C.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[CrossRef] [PubMed]

Chaney, E. J.

X. Liang, A. L. Oldenburg, V. Crecea, E. J. Chaney, and S. A. Boppart, “Optical micro-scale mapping of dynamic biomechanical tissue properties,” Opt. Express 16(15), 11052–11065 (2008).
[CrossRef] [PubMed]

A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51(9), 2165–2177 (2006).
[CrossRef] [PubMed]

Chau, A. H.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[CrossRef] [PubMed]

Chen, S.

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3 Pt 1), 884–889 (2002).
[CrossRef] [PubMed]

Crecea, V.

de Jong, N.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

Dresner, M. A.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

Duc, T. M.

C. Reynaud, F. Sommer, C. Quet, N. El Bounia, and T. M. Duc, “Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy,” Surf. Interface Anal. 30(1), 185–189 (2000).
[CrossRef]

Duncan, D. D.

Ehman, R. L.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Ehnan, R. L.

A. J. Romano, J. A. Bucaro, R. L. Ehnan, and J. J. Shirron, “Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1575–1581 (2000).
[CrossRef] [PubMed]

El Bounia, N.

C. Reynaud, F. Sommer, C. Quet, N. El Bounia, and T. M. Duc, “Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy,” Surf. Interface Anal. 30(1), 185–189 (2000).
[CrossRef]

Emelianov, S. Y.

O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov, “Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium,” J. Acoust. Soc. Am. 99(5), 2791–2798 (1996).
[CrossRef]

Fatemi, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3 Pt 1), 884–889 (2002).
[CrossRef] [PubMed]

Felmlee, J. P.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

Fercher, A. F.

Fink, M.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
[CrossRef] [PubMed]

Fujimoto, J. G.

D. C. Adler, R. Huber, and J. G. Fujimoto, “Phase-sensitive optical coherence tomography at up to 370,000 lines per second using buffered Fourier domain mode-locked lasers,” Opt. Lett. 32(6), 626–628 (2007).
[CrossRef] [PubMed]

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

Furlani, E. P.

E. P. Furlani, “Magnetophoretic separation of blood cells at the microscale,” J. Phys. D Appl. Phys. 40(5), 1313–1319 (2007).
[CrossRef]

Garra, B. S.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Greenleaf, J. F.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3 Pt 1), 884–889 (2002).
[CrossRef] [PubMed]

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Gunther, J. R.

Hinds, M.

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[CrossRef]

Hitzenberger, C. K.

Huber, R.

Insana, M.

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

Insana, M. F.

M. Sridhar, J. Liu, and M. F. Insana, “Elasticity imaging of polymeric media,” J. Biomech. Eng. 129(2), 259–272 (2007).
[CrossRef] [PubMed]

Kallel, F.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Khalil, A. S.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[CrossRef] [PubMed]

Kirkpatrick, S. J.

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

Ko, H. J.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

Konofagou, E. E.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Krouskop, T.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Kruse, S. A.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

Kuhl, C.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
[CrossRef] [PubMed]

Leitgeb, R.

Liang, X.

Liu, J.

M. Sridhar, J. Liu, and M. F. Insana, “Elasticity imaging of polymeric media,” J. Biomech. Eng. 129(2), 259–272 (2007).
[CrossRef] [PubMed]

Lomas, D. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Lorenzen, J.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
[CrossRef] [PubMed]

Luginbuhl, C.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

Mahowald, J. L.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

Maklad, N.

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imaging 15(2), 73–88 (1993).
[CrossRef] [PubMed]

Manduca, A.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Mastik, F.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

Mazza, E.

D. Valtorta and E. Mazza, “Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device,” Med. Image Anal. 9(5), 481–490 (2005).
[CrossRef] [PubMed]

Merritt, C. R. B.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Mofrad, M. R.

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[CrossRef] [PubMed]

Muthupillai, R.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Oldenburg, A. L.

Oliphant, T. E.

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

Ophir, J.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imaging 15(2), 73–88 (1993).
[CrossRef] [PubMed]

Ouis, D.

D. Ouis, “Characterization of polymers by means of a standard viscoelastic model and fractional derivative calculus,” Int. J. Polym. Mater. 53(8), 633–644 (2004).
[CrossRef]

Patel, N. A.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

Plewes, D. B.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

Ponnekanti, H.

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imaging 15(2), 73–88 (1993).
[CrossRef] [PubMed]

Quet, C.

C. Reynaud, F. Sommer, C. Quet, N. El Bounia, and T. M. Duc, “Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy,” Surf. Interface Anal. 30(1), 185–189 (2000).
[CrossRef]

Ralston, T. S.

V. Crecea, A. L. Oldenburg, T. S. Ralston, and S. A. Boppart, “Phase-resolved spectral-domain magnetomotive optical coherence tomography,” Proc. SPIE 6429, 64291X (2007).
[CrossRef]

Reynaud, C.

C. Reynaud, F. Sommer, C. Quet, N. El Bounia, and T. M. Duc, “Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy,” Surf. Interface Anal. 30(1), 185–189 (2000).
[CrossRef]

Righetti, R.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Rinne, S. A.

Rogowska, J.

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

Romano, A. J.

A. J. Romano, J. A. Bucaro, R. L. Ehnan, and J. J. Shirron, “Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1575–1581 (2000).
[CrossRef] [PubMed]

Rossman, P. J.

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Rudenko, O. V.

O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov, “Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium,” J. Acoust. Soc. Am. 99(5), 2791–2798 (1996).
[CrossRef]

Samani, A.

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

Sarvazyan, A. P.

O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov, “Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium,” J. Acoust. Soc. Am. 99(5), 2791–2798 (1996).
[CrossRef]

Schmitt, J. M.

Shirron, J. J.

A. J. Romano, J. A. Bucaro, R. L. Ehnan, and J. J. Shirron, “Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1575–1581 (2000).
[CrossRef] [PubMed]

Sinkus, R.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
[CrossRef] [PubMed]

Sommer, F.

C. Reynaud, F. Sommer, C. Quet, N. El Bounia, and T. M. Duc, “Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy,” Surf. Interface Anal. 30(1), 185–189 (2000).
[CrossRef]

Sondermann, E.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
[CrossRef] [PubMed]

Souchon, R.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Sridhar, M.

M. Sridhar, J. Liu, and M. F. Insana, “Elasticity imaging of polymeric media,” J. Biomech. Eng. 129(2), 259–272 (2007).
[CrossRef] [PubMed]

Srinivasan, S.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Stack, R.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

Suslick, K. S.

Tan, W.

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

Tanter, M.

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
[CrossRef] [PubMed]

Toublan, F. J. J.

Valtorta, D.

D. Valtorta and E. Mazza, “Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device,” Med. Image Anal. 9(5), 481–490 (2005).
[CrossRef] [PubMed]

van der Steen, A. F. W.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

van Soest, G.

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

Varghese, T.

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

Wang, R. K.

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[CrossRef]

S. J. Kirkpatrick, R. K. Wang, and D. D. Duncan, “OCT-based elastography for large and small deformations,” Opt. Express 14(24), 11585–11597 (2006).
[CrossRef] [PubMed]

Wei, A.

Zysk, A. M.

A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51(9), 2165–2177 (2006).
[CrossRef] [PubMed]

Ann. Biomed. Eng. (1)

A. S. Khalil, R. C. Chan, A. H. Chau, B. E. Bouma, and M. R. Mofrad, “Tissue elasticity estimation with optical coherence elastography: toward mechanical characterization of in vivo soft tissue,” Ann. Biomed. Eng. 33(11), 1631–1639 (2005).
[CrossRef] [PubMed]

Annu. Rev. Biomed. Eng. (1)

J. F. Greenleaf, M. Fatemi, and M. Insana, “Selected methods for imaging elastic properties of biological tissues,” Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

R. K. Wang, S. J. Kirkpatrick, and M. Hinds, “Phase-sensitive optical coherence elastography for mapping tissue microstrains in real time,” Appl. Phys. Lett. 90(16), 164105 (2007).
[CrossRef]

Heart (1)

J. Rogowska, N. A. Patel, J. G. Fujimoto, and M. E. Brezinski, “Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues,” Heart 90(5), 556–562 (2004).
[CrossRef] [PubMed]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

A. J. Romano, J. A. Bucaro, R. L. Ehnan, and J. J. Shirron, “Evaluation of a material parameter extraction algorithm using MRI-based displacement measurements,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 47(6), 1575–1581 (2000).
[CrossRef] [PubMed]

Int. J. Polym. Mater. (1)

D. Ouis, “Characterization of polymers by means of a standard viscoelastic model and fractional derivative calculus,” Int. J. Polym. Mater. 53(8), 633–644 (2004).
[CrossRef]

J. Acoust. Soc. Am. (2)

O. V. Rudenko, A. P. Sarvazyan, and S. Y. Emelianov, “Acoustic radiation force and streaming induced by focused nonlinear ultrasound in a dissipative medium,” J. Acoust. Soc. Am. 99(5), 2791–2798 (1996).
[CrossRef]

S. Chen, M. Fatemi, and J. F. Greenleaf, “Remote measurement of material properties from radiation force induced vibration of an embedded sphere,” J. Acoust. Soc. Am. 112(3 Pt 1), 884–889 (2002).
[CrossRef] [PubMed]

J. Biomech. Eng. (1)

M. Sridhar, J. Liu, and M. F. Insana, “Elasticity imaging of polymeric media,” J. Biomech. Eng. 129(2), 259–272 (2007).
[CrossRef] [PubMed]

J. Med. Ultrasound (1)

J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, C. R. B. Merritt, R. Righetti, R. Souchon, S. Srinivasan, and T. Varghese, “Elastography: imaging the elastic properties of soft tissues with ultrasound,” J. Med. Ultrasound 29(4), 155–171 (2002).
[CrossRef]

J. Phys. D Appl. Phys. (1)

E. P. Furlani, “Magnetophoretic separation of blood cells at the microscale,” J. Phys. D Appl. Phys. 40(5), 1313–1319 (2007).
[CrossRef]

Magn. Reson. Med. (1)

R. Sinkus, M. Tanter, S. Catheline, J. Lorenzen, C. Kuhl, E. Sondermann, and M. Fink, “Imaging anisotropic and viscous properties of breast tissue by magnetic resonance-elastography,” Magn. Reson. Med. 53(2), 372–387 (2005).
[CrossRef] [PubMed]

Med. Image Anal. (2)

A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: in vivo non-invasive mapping of tissue elasticity,” Med. Image Anal. 5(4), 237–254 (2001).
[CrossRef] [PubMed]

D. Valtorta and E. Mazza, “Dynamic measurement of soft tissue viscoelastic properties with a torsional resonator device,” Med. Image Anal. 9(5), 481–490 (2005).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (2)

Phys. Med. Biol. (3)

A. M. Zysk, E. J. Chaney, and S. A. Boppart, “Refractive index of carcinogen-induced rat mammary tumours,” Phys. Med. Biol. 51(9), 2165–2177 (2006).
[CrossRef] [PubMed]

A. Samani, J. Bishop, C. Luginbuhl, and D. B. Plewes, “Measuring the elastic modulus of ex vivo small tissue samples,” Phys. Med. Biol. 48(14), 2183–2198 (2003).
[CrossRef] [PubMed]

G. van Soest, F. Mastik, N. de Jong, and A. F. W. van der Steen, “Robust intravascular optical coherence elastography by line correlations,” Phys. Med. Biol. 52(9), 2445–2458 (2007).
[CrossRef] [PubMed]

Proc. SPIE (1)

V. Crecea, A. L. Oldenburg, T. S. Ralston, and S. A. Boppart, “Phase-resolved spectral-domain magnetomotive optical coherence tomography,” Proc. SPIE 6429, 64291X (2007).
[CrossRef]

Science (1)

R. Muthupillai, D. J. Lomas, P. J. Rossman, J. F. Greenleaf, A. Manduca, and R. L. Ehman, “Magnetic resonance elastography by direct visualization of propagating acoustic strain waves,” Science 269(5232), 1854–1857 (1995).
[CrossRef] [PubMed]

Surf. Interface Anal. (1)

C. Reynaud, F. Sommer, C. Quet, N. El Bounia, and T. M. Duc, “Quantitative determination of Young’s modulus on a biphase polymer system using atomic force microscopy,” Surf. Interface Anal. 30(1), 185–189 (2000).
[CrossRef]

Tissue Eng. (1)

H. J. Ko, W. Tan, R. Stack, and S. A. Boppart, “Optical coherence elastography of engineered and developing tissue,” Tissue Eng. 12(1), 63–73 (2006).
[CrossRef] [PubMed]

Ultrason. Imaging (1)

I. Céspedes, J. Ophir, H. Ponnekanti, and N. Maklad, “Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo,” Ultrason. Imaging 15(2), 73–88 (1993).
[CrossRef] [PubMed]

Other (4)

N. W. Tschoegl, The phenomenological theory of linear viscoelastic behavior: an introduction (Springer-Verlag, 1989).

A. Wineman, and K. Rajagopal, Mechanical Response of Polymers (Cambridge University Press, 2000).

J. Ferry, Viscoelastic Properties of Polymers (John Wiley and Sons, 1980).

P. Agache, and P. Humbert, Measuring the skin (Springer-Verlag, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the MM-OCE set up with MNPs. (top left) The magnetic coil provides a magnetic field that is aligned axially with the imaging beam. The field gradient engages the motion of MNPs in the sample. (top right) Transmission electron micrograph of the magnetite MNPs. (bottom) The near-infrared light provided by the titanium:sapphire laser is divided by the 50:50 fiber-optic beamsplitter between the reference and the sample arms of the interferometer. The interference signal is wavelength-dispersed by a diffraction grating and recorded by a charged coupled device (CCD) line array. The magnetic field activity is synchronized with the OCT data acquisition, and the resulting optical back-scattering data is acquired, processed, and displayed on a personal computer.

Fig. 2
Fig. 2

Scatterer response upon square-wave modulation of a magnetic field. (a) Two-dimensional (x-z) cross-sectional (B-mode) amplitude OCT image of a silicone sample containing MNPs and TiO2 optical scatterers. The dashed line indicates the location in the sample where M-mode imaging was performed with MM-OCE. (b) M-mode amplitude OCT image of a region of scatterers acquired while the magnetic field was applied in a square-wave pattern. (c) Average time-dependent scatterer changes along one axial position, illustrating both the changes in phase (red) and changes in amplitude (blue) as the magnetic field is applied, relative to an idle state with zero magnetic field.

Fig. 3
Fig. 3

Scatterer response to different magnetic field strengths. Direct measurements (points) of maximum change in unwrapped phase from an average scatterer, which are directly proportional to the average maximum displacements of the MNPs, as the electromagnet control voltage is changed. The polynomial fit follows the law y = Cx1.7 . The applied voltage is directly proportional to the gradient of the square of the magnetic field. MM-OCE data is acquired at displacements not exceeding 1.5 μm in order to avoid excessive phase wrapping of the phase signal.

Fig. 4
Fig. 4

Normalized measured displacements from samples of different elastic moduli following a step (off-to-on) transition of the applied magnetic field. Three samples that span a wide range of elastic moduli (measured by indentation: 0.4 kPa [green], 6.4 kPa [red], 27 kPa [blue]) are shown. These sample moduli are characteristic of soft biological tissue, and were chosen to illustrate the natural frequencies of oscillation measured by MM-OCE. The “0/1” labels on the vertical axis are respectively indicating the minimum and maximum of the normalized amplitudes of the displacements traces. As expected, it is observed that as the stiffness of the medium increases, the natural frequency of oscillation of the response increases.

Fig. 5
Fig. 5

MM-OCE-measured natural frequencies of oscillation in samples of varying elastic moduli. The natural frequency of oscillation of the viscoelastic medium depends linearly on the square root of the elastic modulus, as predicted by the Kelvin-Voigt model. The MM-OCE relaxation frequency data (vertical axis) were collected as the samples relaxed following an on-to-off step magnetic field transition. The elastic moduli (horizontal axis) values were measured by indentation.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

d φ ( d t ) = 4 π n λ 0 d z ( d t ) ,
d ( t ) = i = 1 2 a i e π γ i t cos ( 2 π f i t δ i ) + C ,

Metrics