Abstract

The influence of nano textured front contacts on the optical wave propagation within microcrystalline thin-film silicon solar cell was investigated. Periodic triangular gratings were integrated in solar cells and the influence of the profile dimensions on the quantum efficiency and the short circuit current was studied. A Finite Difference Time Domain approach was used to rigorously solve the Maxwell’s equations in two dimensions. By studying the influence of the period and height of the triangular profile, the design of the structures were optimized to achieve higher short circuit currents and quantum efficiencies. Enhancement of the short circuit current in the blue part of the spectrum is achieved for small triangular periods (P<200 nm), whereas the short circuit current in the red and infrared part of the spectrum is increased for triangular periods (P = 900nm) comparable to the optical wavelength. The influence of the surface texture on the solar cell performance will be discussed.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Rech and H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 155–167 (1999).
    [CrossRef]
  2. J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
    [CrossRef]
  3. M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(1), 85–94 (2009).
    [CrossRef]
  4. K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
    [CrossRef]
  5. J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
    [CrossRef]
  6. C. Haase, D. Knipp, and H. Stiebig, “Optics of thin-film silicon solar cells with efficient periodic light trapping textures,” Proc. SPIE, 6645, (2007).
  7. C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
    [CrossRef]
  8. A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
    [CrossRef]
  9. A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
    [CrossRef]
  10. S. S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a:Si thin-film solar cell,” J. Phys. D Appl. Phys. 40(3), 754–758 (2007).
    [CrossRef]
  11. A. Cuevas, R. A. Sinton, N. E. Midkiff, and R. M. Swanson, “26-percent efficient point-junction concentrator solar cells with a front metal grid,” IEEE Electron Device Lett. 11(1), 6–8 (1990).
    [CrossRef]
  12. T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
    [CrossRef]
  13. J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
    [CrossRef]
  14. S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16(13), 9332–9343 (2008).
    [CrossRef] [PubMed]
  15. A. Banerjee and S. Guha, “Study of back reflectors for amorphous silicon alloy solar cell application,” J. Appl. Phys. 69(2), 1030 (1991).
    [CrossRef] [PubMed]
  16. J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
    [CrossRef]
  17. N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004).
    [CrossRef]
  18. T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
    [CrossRef]
  19. Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, and F. Finger, “Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers,” Appl. Phys. Lett. 87(7), 073503 (2005).
    [CrossRef]
  20. H. Stiebig, and C. Haase, IEF-5, Research Center Jülich, 52428 Jülich, Germany (personal communication).
  21. R. Dewan, D. Madzharov, A. Raykov, and D. Knipp, “Optics in thin-film silicon solar cells with integrated lamellar gratings,” Mater. Res. Soc. Symp. Proc. Vol. 1153 (2009)

2009

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(1), 85–94 (2009).
[CrossRef]

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

2008

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Opt. Express 16(13), 9332–9343 (2008).
[CrossRef] [PubMed]

2007

S. S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a:Si thin-film solar cell,” J. Phys. D Appl. Phys. 40(3), 754–758 (2007).
[CrossRef]

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

2006

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[CrossRef]

2005

Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, and F. Finger, “Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers,” Appl. Phys. Lett. 87(7), 073503 (2005).
[CrossRef]

2004

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004).
[CrossRef]

2002

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

1999

B. Rech and H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 155–167 (1999).
[CrossRef]

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

1995

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[CrossRef]

1991

A. Banerjee and S. Guha, “Study of back reflectors for amorphous silicon alloy solar cell application,” J. Appl. Phys. 69(2), 1030 (1991).
[CrossRef] [PubMed]

1990

A. Cuevas, R. A. Sinton, N. E. Midkiff, and R. M. Swanson, “26-percent efficient point-junction concentrator solar cells with a front metal grid,” IEEE Electron Device Lett. 11(1), 6–8 (1990).
[CrossRef]

Altermatt, P.

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[CrossRef]

Ballif, C.

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Banerjee, A.

A. Banerjee and S. Guha, “Study of back reflectors for amorphous silicon alloy solar cell application,” J. Appl. Phys. 69(2), 1030 (1991).
[CrossRef] [PubMed]

Brammer, T.

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004).
[CrossRef]

Bucher, C.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Bunte, E.

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004).
[CrossRef]

Campa, A.

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

Carius, R.

Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, and F. Finger, “Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers,” Appl. Phys. Lett. 87(7), 073503 (2005).
[CrossRef]

Chen, C. C.

S. S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a:Si thin-film solar cell,” J. Phys. D Appl. Phys. 40(3), 754–758 (2007).
[CrossRef]

Cuevas, A.

A. Cuevas, R. A. Sinton, N. E. Midkiff, and R. M. Swanson, “26-percent efficient point-junction concentrator solar cells with a front metal grid,” IEEE Electron Device Lett. 11(1), 6–8 (1990).
[CrossRef]

Dubail, J.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Dubail, S.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Emery, K.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(1), 85–94 (2009).
[CrossRef]

Fahr, S.

Faÿ, S.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Feitknecht, L.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Finger, F.

Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, and F. Finger, “Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers,” Appl. Phys. Lett. 87(7), 073503 (2005).
[CrossRef]

Fuyuki, T.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[CrossRef]

Garwe, F.

S. S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a:Si thin-film solar cell,” J. Phys. D Appl. Phys. 40(3), 754–758 (2007).
[CrossRef]

Geng, X.

Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, and F. Finger, “Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers,” Appl. Phys. Lett. 87(7), 073503 (2005).
[CrossRef]

Golay, S.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Green, M. A.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(1), 85–94 (2009).
[CrossRef]

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[CrossRef]

Guha, S.

A. Banerjee and S. Guha, “Study of back reflectors for amorphous silicon alloy solar cell application,” J. Appl. Phys. 69(2), 1030 (1991).
[CrossRef] [PubMed]

Haase, C.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

Haug, F.-J.

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Hishikawa, Y.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(1), 85–94 (2009).
[CrossRef]

Igari, S.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Kirchartz, T.

Klein, S.

Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, and F. Finger, “Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers,” Appl. Phys. Lett. 87(7), 073503 (2005).
[CrossRef]

Krause, M.

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004).
[CrossRef]

Krc, J.

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

Kroll, U.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Lederer, F.

Lin, A.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Lo, S. S.

S. S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a:Si thin-film solar cell,” J. Phys. D Appl. Phys. 40(3), 754–758 (2007).
[CrossRef]

Mai, Y.

Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, and F. Finger, “Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers,” Appl. Phys. Lett. 87(7), 073503 (2005).
[CrossRef]

Meier, J.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Midkiff, N. E.

A. Cuevas, R. A. Sinton, N. E. Midkiff, and R. M. Swanson, “26-percent efficient point-junction concentrator solar cells with a front metal grid,” IEEE Electron Device Lett. 11(1), 6–8 (1990).
[CrossRef]

Moriarty, T.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Müller, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004).
[CrossRef]

Nakajima, A.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Niquille, X.

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Okamoto, Y.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Pertch, T.

S. S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a:Si thin-film solar cell,” J. Phys. D Appl. Phys. 40(3), 754–758 (2007).
[CrossRef]

Phillips, J.

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

Rau, U.

Rech, B.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

B. Rech and H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 155–167 (1999).
[CrossRef]

Rockstuhl, C.

Senoussaoui, N.

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004).
[CrossRef]

Shah, A.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Sinton, R. A.

A. Cuevas, R. A. Sinton, N. E. Midkiff, and R. M. Swanson, “26-percent efficient point-junction concentrator solar cells with a front metal grid,” IEEE Electron Device Lett. 11(1), 6–8 (1990).
[CrossRef]

Söderström, T.

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Spitznagel, J.

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Springer, J.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Stiebig, H.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, and F. Finger, “Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers,” Appl. Phys. Lett. 87(7), 073503 (2005).
[CrossRef]

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004).
[CrossRef]

Swanson, R. M.

A. Cuevas, R. A. Sinton, N. E. Midkiff, and R. M. Swanson, “26-percent efficient point-junction concentrator solar cells with a front metal grid,” IEEE Electron Device Lett. 11(1), 6–8 (1990).
[CrossRef]

Tawada, Y.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Topic, M.

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

Ulbrich, C.

Uraoka, Y.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[CrossRef]

Vallat-Sauvain, E.

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

Vanecek, M.

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Wagner, H.

B. Rech and H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 155–167 (1999).
[CrossRef]

Wang, A.

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[CrossRef]

Warta, W.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(1), 85–94 (2009).
[CrossRef]

Yagi, T.

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[CrossRef]

Yamamoto, K.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Yoshimi, M.

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

Zhao, J.

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[CrossRef]

Appl. Phys. Lett.

C. Haase and H. Stiebig, “Thin-film silicon solar cells with efficient periodic light trapping texture,” Appl. Phys. Lett. 91(6), 061116 (2007).
[CrossRef]

J. Zhao, A. Wang, P. Altermatt, and M. A. Green, “Twenty-four percent efficient silicon solar cells with double layer antireflection coatings and reduced resistance loss,” Appl. Phys. Lett. 66(26), 3636 (1995).
[CrossRef]

Y. Mai, S. Klein, R. Carius, H. Stiebig, X. Geng, and F. Finger, “Open circuit voltage improvement of high-deposition-rate microcrystalline silicon solar cells by hot wire interface layers,” Appl. Phys. Lett. 87(7), 073503 (2005).
[CrossRef]

Appl. Phys., A Mater. Sci. Process.

B. Rech and H. Wagner, “Potential of amorphous silicon for solar cells,” Appl. Phys., A Mater. Sci. Process. 69(2), 155–167 (1999).
[CrossRef]

K. Yamamoto, M. Yoshimi, Y. Tawada, Y. Okamoto, A. Nakajima, and S. Igari, “Thin-film poly-Si solar cells on glass substrate fabricated at low temperature,” Appl. Phys., A Mater. Sci. Process. 69(2), 179–185 (1999).
[CrossRef]

IEEE Electron Device Lett.

A. Cuevas, R. A. Sinton, N. E. Midkiff, and R. M. Swanson, “26-percent efficient point-junction concentrator solar cells with a front metal grid,” IEEE Electron Device Lett. 11(1), 6–8 (1990).
[CrossRef]

J. Appl. Phys.

A. Banerjee and S. Guha, “Study of back reflectors for amorphous silicon alloy solar cell application,” J. Appl. Phys. 69(2), 1030 (1991).
[CrossRef] [PubMed]

A. Čampa, J. Krč, and M. Topič, “Analysis and optimisation of microcrystalline silicon solar cells with periodic sinusoidal textured interfaces by two-dimensional optical simulations,” J. Appl. Phys. 105(8), 083107 (2009).
[CrossRef]

J. Phys. D Appl. Phys.

S. S. Lo, C. C. Chen, F. Garwe, and T. Pertch, “Broad-band anti-reflection coupler for a:Si thin-film solar cell,” J. Phys. D Appl. Phys. 40(3), 754–758 (2007).
[CrossRef]

Opt. Express

Prog. Photovolt. Res. Appl.

M. A. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 33),” Prog. Photovolt. Res. Appl. 17(1), 85–94 (2009).
[CrossRef]

T. Söderström, F.-J. Haug, X. Niquille, and C. Ballif, “TCOs for nip thin film silicon solar cells,” Prog. Photovolt. Res. Appl. 17(3), 165–176 (2009).
[CrossRef]

Sol. Energy

J. Müller, B. Rech, J. Springer, and M. Vanecek, “TCO and light trapping in silicon thin film solar cells,” Sol. Energy 77(6), 917–930 (2004).
[CrossRef]

Sol. Energy Mater. Sol. Cells

A. Lin and J. Phillips, “Optimization of random diffraction gratings in thin-film solar cells using genetic algorithms,” Sol. Energy Mater. Sol. Cells 92(12), 1689–1696 (2008).
[CrossRef]

J. Meier, S. Dubail, S. Golay, U. Kroll, S. Faÿ, E. Vallat-Sauvain, L. Feitknecht, J. Dubail, and A. Shah, “Microcrystalline silicon and the impact on micromorph tandem solar cells,” Sol. Energy Mater. Sol. Cells 74(1-4), 457–467 (2002).
[CrossRef]

T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures,” Sol. Energy Mater. Sol. Cells 90(16), 2647–2656 (2006).
[CrossRef]

Thin Solid Films

N. Senoussaoui, M. Krause, J. Müller, E. Bunte, T. Brammer, and H. Stiebig, “Thin-film solar cells with periodic grating coupler,” Thin Solid Films 451–452, 397–401 (2004).
[CrossRef]

J. Meier, J. Spitznagel, U. Kroll, C. Bucher, S. Faÿ, T. Moriarty, and A. Shah, “Potential of amorphous and microcrystalline silicon solar cells,” Thin Solid Films 451–452, 518–524 (2004).
[CrossRef]

Other

C. Haase, D. Knipp, and H. Stiebig, “Optics of thin-film silicon solar cells with efficient periodic light trapping textures,” Proc. SPIE, 6645, (2007).

H. Stiebig, and C. Haase, IEF-5, Research Center Jülich, 52428 Jülich, Germany (personal communication).

R. Dewan, D. Madzharov, A. Raykov, and D. Knipp, “Optics in thin-film silicon solar cells with integrated lamellar gratings,” Mater. Res. Soc. Symp. Proc. Vol. 1153 (2009)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Atomic Force Microscope (AFM) image of a randomly textured aluminum doped zinc oxide (ZnO:Al) film. (b) Surface profile of the same textured substrate, showing the triangular grooves that are formed due to etching by a hydrochloric acid solution.

Fig. 2
Fig. 2

Schematic sketch of a thin film microcrystalline silicon solar cell (a) on a smooth substrate and (b) with triangular textured substrate. The different unit cells in Fig. (b) are separated by dashed lines.

Fig. 3
Fig. 3

Simulated power loss profile for textured unit cell with period 900 nm and profile heights of (a, c) 100 nm and (b, d) 400 nm under monochromatic illumination of (a, b) wavelength 400 nm and (c, d) wavelength 700 nm.

Fig. 4
Fig. 4

Comparison of quantum efficiency for solar cell on smooth substrate with triangular structures of height 400 nm and periods of 100 nm and 900 nm.

Fig. 5
Fig. 5

Short circuit current for different triangular profile heights as a function of the period of the unit cell under (a) blue illumination (wavelength 300 – 500 nm) and (b) red and infrared illumination (wavelength 700 – 1100 nm).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Q ( x , y ) = 1 2 c ε 0 n α | E ( x , z ) | 2
Q E = 1 P o p t Q ( x , z ) d x d z
I S C = q h c λ min λ max λ Q E ( λ ) S ( λ ) d λ
P n sin ( θ m ) = m λ

Metrics