Abstract

We propose and experimentally demonstrate an interferometer for femtosecond pulses with spectral bandwidth about 100 nm. The scheme is based on a Michelson interferometer with a dispersion compensating module. A diffractive lens serves the purpose of equalizing the optical-path-length difference for a wide range of frequencies. In this way, it is possible to register high-contrast interference fringes with micrometric resolution over the whole area of a commercial CCD sensor for broadband femtosecond pulses.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
    [CrossRef]
  2. L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27(7), 530–532 (2002).
    [CrossRef] [PubMed]
  3. E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28(6), 260–264 (1997).
    [CrossRef]
  4. L. Martínez-León, G. Pedrini, and W. Osten, “Applications of short-coherence digital holography in microscopy,” Appl. Opt. 44(19), 3977–3984 (2005).
    [CrossRef] [PubMed]
  5. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
    [CrossRef] [PubMed]
  6. A. A. Maznev, T. F. Crimmins, and K. A. Nelson, “How to make femtosecond pulses overlap,” Opt. Lett. 23(17), 1378–1380 (1998).
    [CrossRef] [PubMed]
  7. Z. Ansari, Y. Gu, M. Tziraki, R. Jones, P. M. W. French, D. D. Nolte, and M. R. Melloch, “Elimination of beam walk-off in low-coherence off-axis photorefractive holography,” Opt. Lett. 26(6), 334–336 (2001).
    [CrossRef] [PubMed]
  8. B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007), Chap. 11.
  9. E. N. Leith and G. J. Swanson, “Achromatic interferometers for white-light optical processing and holography,” Appl. Opt. 19, 638–644 (1980).
    [CrossRef] [PubMed]
  10. J. Hebling, I. Z. Kozma, and J. Kuhl, “Compact high-aperture optical setup for excitation of dynamic gratings by ultrashort light pulses,” J. Opt. Soc. Am. B 17(10), 1803–1805 (2000).
    [CrossRef]
  11. T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
    [CrossRef]
  12. H. Xiao and K. E. Oughstun, “Failure of the group-velocity description for ultrawideband pulse propagation in causally dispersive, absorptive dielectric,” J. Opt. Soc. Am. B 16(10), 1773–1785 (1999).
    [CrossRef]
  13. P. Andrés, J. Lancis, E. E. Sicre, and E. Bonet, “Achromatic Fresnel diffraction patterns,” Opt. Commun. 104(1-3), 39–45 (1993).
    [CrossRef]
  14. J. Lancis, E. E. Sicre, A. Pons, and G. Saavedra, “Achromatic white-light self-imaging phenomenon-an approach using the Wigner distribution function,” J. Mod. Opt. 42(2), 425–434 (1995).
    [CrossRef]
  15. G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, P. Andrés, V. Climent, and J. Lancis, “Experimental generation of high-contrast Talbot images with an ultrashort laser pulse,” Opt. Commun. 281, 374–379 (2008).

2008 (1)

G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, P. Andrés, V. Climent, and J. Lancis, “Experimental generation of high-contrast Talbot images with an ultrashort laser pulse,” Opt. Commun. 281, 374–379 (2008).

2005 (2)

2003 (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

2002 (1)

2001 (1)

2000 (1)

1999 (1)

1998 (1)

1997 (2)

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28(6), 260–264 (1997).
[CrossRef]

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[CrossRef]

1995 (1)

J. Lancis, E. E. Sicre, A. Pons, and G. Saavedra, “Achromatic white-light self-imaging phenomenon-an approach using the Wigner distribution function,” J. Mod. Opt. 42(2), 425–434 (1995).
[CrossRef]

1993 (1)

P. Andrés, J. Lancis, E. E. Sicre, and E. Bonet, “Achromatic Fresnel diffraction patterns,” Opt. Commun. 104(1-3), 39–45 (1993).
[CrossRef]

1980 (1)

Andrés, P.

G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, P. Andrés, V. Climent, and J. Lancis, “Experimental generation of high-contrast Talbot images with an ultrashort laser pulse,” Opt. Commun. 281, 374–379 (2008).

P. Andrés, J. Lancis, E. E. Sicre, and E. Bonet, “Achromatic Fresnel diffraction patterns,” Opt. Commun. 104(1-3), 39–45 (1993).
[CrossRef]

Ansari, Z.

Boccara, A. C.

Bonet, E.

P. Andrés, J. Lancis, E. E. Sicre, and E. Bonet, “Achromatic Fresnel diffraction patterns,” Opt. Commun. 104(1-3), 39–45 (1993).
[CrossRef]

Brabec, T.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[CrossRef]

Charrière, F.

Climent, V.

G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, P. Andrés, V. Climent, and J. Lancis, “Experimental generation of high-contrast Talbot images with an ultrashort laser pulse,” Opt. Commun. 281, 374–379 (2008).

Crimmins, T. F.

Cuche, E.

P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, “Time-domain optical coherence tomography with digital holographic microscopy,” Appl. Opt. 44(10), 1806–1812 (2005).
[CrossRef] [PubMed]

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28(6), 260–264 (1997).
[CrossRef]

Depeursinge, C.

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28(6), 260–264 (1997).
[CrossRef]

Depeursinge, C. D.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Dubois, A.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Fernández-Alonso, M.

G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, P. Andrés, V. Climent, and J. Lancis, “Experimental generation of high-contrast Talbot images with an ultrashort laser pulse,” Opt. Commun. 281, 374–379 (2008).

French, P. M. W.

Gu, Y.

Hebling, J.

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Jones, R.

Kozma, I. Z.

Krausz, F.

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[CrossRef]

Kuhl, J.

Lancis, J.

G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, P. Andrés, V. Climent, and J. Lancis, “Experimental generation of high-contrast Talbot images with an ultrashort laser pulse,” Opt. Commun. 281, 374–379 (2008).

J. Lancis, E. E. Sicre, A. Pons, and G. Saavedra, “Achromatic white-light self-imaging phenomenon-an approach using the Wigner distribution function,” J. Mod. Opt. 42(2), 425–434 (1995).
[CrossRef]

P. Andrés, J. Lancis, E. E. Sicre, and E. Bonet, “Achromatic Fresnel diffraction patterns,” Opt. Commun. 104(1-3), 39–45 (1993).
[CrossRef]

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Leith, E. N.

Marquet, P.

Martínez-León, L.

Massatsch, P.

Maznev, A. A.

Melloch, M. R.

Mendoza-Yero, O.

G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, P. Andrés, V. Climent, and J. Lancis, “Experimental generation of high-contrast Talbot images with an ultrashort laser pulse,” Opt. Commun. 281, 374–379 (2008).

Mínguez-Vega, G.

G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, P. Andrés, V. Climent, and J. Lancis, “Experimental generation of high-contrast Talbot images with an ultrashort laser pulse,” Opt. Commun. 281, 374–379 (2008).

Nelson, K. A.

Nolte, D. D.

Osten, W.

Oughstun, K. E.

Pedrini, G.

Pons, A.

J. Lancis, E. E. Sicre, A. Pons, and G. Saavedra, “Achromatic white-light self-imaging phenomenon-an approach using the Wigner distribution function,” J. Mod. Opt. 42(2), 425–434 (1995).
[CrossRef]

Poscio, P.

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28(6), 260–264 (1997).
[CrossRef]

Saavedra, G.

J. Lancis, E. E. Sicre, A. Pons, and G. Saavedra, “Achromatic white-light self-imaging phenomenon-an approach using the Wigner distribution function,” J. Mod. Opt. 42(2), 425–434 (1995).
[CrossRef]

Sicre, E. E.

J. Lancis, E. E. Sicre, A. Pons, and G. Saavedra, “Achromatic white-light self-imaging phenomenon-an approach using the Wigner distribution function,” J. Mod. Opt. 42(2), 425–434 (1995).
[CrossRef]

P. Andrés, J. Lancis, E. E. Sicre, and E. Bonet, “Achromatic Fresnel diffraction patterns,” Opt. Commun. 104(1-3), 39–45 (1993).
[CrossRef]

Swanson, G. J.

Tziraki, M.

Vabre, L.

Xiao, H.

Appl. Opt. (3)

J. Mod. Opt. (1)

J. Lancis, E. E. Sicre, A. Pons, and G. Saavedra, “Achromatic white-light self-imaging phenomenon-an approach using the Wigner distribution function,” J. Mod. Opt. 42(2), 425–434 (1995).
[CrossRef]

J. Opt. (1)

E. Cuche, P. Poscio, and C. Depeursinge, “Optical tomography by means of a numerical low-coherence holographic technique,” J. Opt. 28(6), 260–264 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

P. Andrés, J. Lancis, E. E. Sicre, and E. Bonet, “Achromatic Fresnel diffraction patterns,” Opt. Commun. 104(1-3), 39–45 (1993).
[CrossRef]

G. Mínguez-Vega, O. Mendoza-Yero, M. Fernández-Alonso, P. Andrés, V. Climent, and J. Lancis, “Experimental generation of high-contrast Talbot images with an ultrashort laser pulse,” Opt. Commun. 281, 374–379 (2008).

Opt. Lett. (3)

Phys. Rev. Lett. (1)

T. Brabec and F. Krausz, “Nonlinear optical pulse propagation in the single-cycle regime,” Phys. Rev. Lett. 78(17), 3282–3285 (1997).
[CrossRef]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography-principles and applications,” Rep. Prog. Phys. 66(2), 239–303 (2003).
[CrossRef]

Other (1)

B. E. A. Saleh, and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007), Chap. 11.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sketch of a conventional Michelson interferometer with tilted mirrors for spatial recording of interference fringes. The length mistmatch between the interferometer arms is Δ e C B S C M , 1 - C B S C M , 2 . The carrier frequency and the spectral width of the source fix the number of recordable fringes.

Fig. 2
Fig. 2

Interferometer for femtosecond pulses with extended visibility. The arms of the interferometer are of identical length and a diffractive lens is inserted at the image focal plane of the achromatic lens.

Fig. 3
Fig. 3

Plot of the visibility of the interference fringes as a function of the normalized transverse coordinate at the sensor plane for the optical setup in Fig. 1 (solid line) and the optical setup in Fig. 2. For the former, both the quadratic approximation (long-dashed line) and the full dependence with the frequency of the phase difference between the object and the reference wave (short-dashed line) are plotted.

Fig. 4
Fig. 4

a) Picture of the interferometer with the DCM for femtosecond pulses. b) Spectral energy distribution of the Ti:sapphire femtosecond source (solid line) and its Gaussian fit (dashed line).

Fig. 5
Fig. 5

Interference fringes and corresponding line scans recorded at the sensor plane of: (a) the optical setup in Fig. 1; and (b) the optical setup in Fig. 2.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S ( ω ) = | a ˜ ( ω ) | 2 = | a ( t ) e i ω t d t | 2 ,
I = I o + e { - S ( ω ) e i Δ Φ ( ω + ω o ) d ω } ,
Δ Φ ( ω + ω o ) Δ Φ o + τ ω + 1 2 τ ω 2 ,
I ( τ , τ ) = I o { 1 + V ( τ , τ ) cos [ Δ Φ o + φ ( τ , τ ) ] } ,
γ g ( τ , τ ) = 1 I o - S ( ω ) e i τ ω e i ( τ / 2 ) ω 2 d ω .
Δ Φ ( ω ) = ω Δ L ( ω ) c ,
Δ L ( ω ) = f 2 B [ A f ( θ 2 2 - θ 1 2 ) 2 x S ( θ 2 - θ 1 ) ] .
ω ( ω B ) | ω o = 0 , ω ( A ω B ) | ω o = 0.

Metrics