Abstract

We demonstrate a combined magneto-optical trap and imaging system that is suitable for the investigation of cold atoms near surfaces. In particular, we are able to trap atoms close to optically scattering surfaces and to image them with an excellent signal-to-noise ratio. We also demonstrate a simple magneto-optical atom cloud launching method. We anticipate that this system will be useful for a range of experimental studies of novel atom-surface interactions and atom trap miniaturization.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, (1987).
    [CrossRef] [PubMed]
  2. F. Shimizu, K. Shimizu, and H. Takuma, "Four-beam laser trap of neutral atoms," Opt. Lett. 16, 339-341 (1991).
    [CrossRef] [PubMed]
  3. O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, and A. Clairon, "Observation of a new magneto-optical trap," EPL (Europhys. Lett.)  20, 687-691 (1992).
    [CrossRef]
  4. K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, (1996).
    [CrossRef] [PubMed]
  5. J. Reichel, W. Hansel, and T. W. Hansch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398 (1999).
    [CrossRef]
  6. S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
    [CrossRef] [PubMed]
  7. R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling cold atoms using nanofabricated surfaces: Atom chips," Phys. Rev. Lett. 84, 4749-4752 (2000).
    [CrossRef] [PubMed]
  8. S. Pollock, J. P. Cotter, A. Laliotis, and E. A. Hinds, "Integrated magneto-optical traps on a chip using silicon pyramid structures," Opt. Express 17, 14109-14114 (2009).
    [CrossRef] [PubMed]
  9. F. Nez, "Optical frequency determination of the hyperfine components of the 5s1/2-5d3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
    [CrossRef]
  10. Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, "An atomic trap based on evanescent light waves," J. Phys. B: At. Mol. Opt. Phys. 24, 3173-3178 (1991).
    [CrossRef]
  11. B. E. Schultz, H. Ming, G. A. Noble, andW. A. vanWijngaarden, "Measurement of the rb d2 transition linewidth at ultralow temperature," Eur. Phys. J. D 48, 171-176 (2008).
    [CrossRef]
  12. K. L. Corwin, Z. T. Lu, C. F. Hand, R. J. Epstein, and C. E. Wieman, "Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor," Appl. Opt. 37, 3295-3298 (1998).
    [CrossRef]
  13. M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom, and K. Dholakia, "Realization of a mirror magneto-optical trap," J. Mod. Opt. 48, 1123-1128 (2001).
  14. D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008).
    [CrossRef]
  15. A. Vernier, S. F. Arnold, E. Riis, and A. S. Arnold, "Enhanced frequency up-conversion in Rb vapor," ArXiv e-prints (2009).
  16. S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, "Multiphoton magnetooptical trap," Phys. Rev. Lett. 103, 173003 (2009).
    [CrossRef] [PubMed]
  17. S. H. Autler and C. H. Townes, "Stark effect in rapidly varying fields," Phys. Rev. 100, 703-722 (1955).
    [CrossRef]
  18. W. Wohlleben, F. Chevy, K. Madison, and J. Dalibard, "An atom faucet," Eur. Phys. J. D 15, 237-244 (2001).
    [CrossRef]
  19. H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a Bose-Einstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
    [CrossRef]

2009

2008

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008).
[CrossRef]

B. E. Schultz, H. Ming, G. A. Noble, andW. A. vanWijngaarden, "Measurement of the rb d2 transition linewidth at ultralow temperature," Eur. Phys. J. D 48, 171-176 (2008).
[CrossRef]

2003

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a Bose-Einstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

2001

W. Wohlleben, F. Chevy, K. Madison, and J. Dalibard, "An atom faucet," Eur. Phys. J. D 15, 237-244 (2001).
[CrossRef]

M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom, and K. Dholakia, "Realization of a mirror magneto-optical trap," J. Mod. Opt. 48, 1123-1128 (2001).

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

2000

R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling cold atoms using nanofabricated surfaces: Atom chips," Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

1999

J. Reichel, W. Hansel, and T. W. Hansch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

1998

1996

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

1993

F. Nez, "Optical frequency determination of the hyperfine components of the 5s1/2-5d3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
[CrossRef]

1992

O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, and A. Clairon, "Observation of a new magneto-optical trap," EPL (Europhys. Lett.)  20, 687-691 (1992).
[CrossRef]

1991

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, "An atomic trap based on evanescent light waves," J. Phys. B: At. Mol. Opt. Phys. 24, 3173-3178 (1991).
[CrossRef]

F. Shimizu, K. Shimizu, and H. Takuma, "Four-beam laser trap of neutral atoms," Opt. Lett. 16, 339-341 (1991).
[CrossRef] [PubMed]

1987

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, (1987).
[CrossRef] [PubMed]

1955

S. H. Autler and C. H. Townes, "Stark effect in rapidly varying fields," Phys. Rev. 100, 703-722 (1955).
[CrossRef]

Akerboom, F.

M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom, and K. Dholakia, "Realization of a mirror magneto-optical trap," J. Mod. Opt. 48, 1123-1128 (2001).

Anderson, R.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Autler, S. H.

S. H. Autler and C. H. Townes, "Stark effect in rapidly varying fields," Phys. Rev. 100, 703-722 (1955).
[CrossRef]

Balykin, V. I.

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, "An atomic trap based on evanescent light waves," J. Phys. B: At. Mol. Opt. Phys. 24, 3173-3178 (1991).
[CrossRef]

Bardou, F.

O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, and A. Clairon, "Observation of a new magneto-optical trap," EPL (Europhys. Lett.)  20, 687-691 (1992).
[CrossRef]

Bartlett, P. N.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Baumberg, J. J.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Bell, S. C.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Birkin, P. R.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Brown, R. C.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, "Multiphoton magnetooptical trap," Phys. Rev. Lett. 103, 173003 (2009).
[CrossRef] [PubMed]

Cable, A.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, (1987).
[CrossRef] [PubMed]

Cassettari, D.

R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling cold atoms using nanofabricated surfaces: Atom chips," Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Chevy, F.

W. Wohlleben, F. Chevy, K. Madison, and J. Dalibard, "An atom faucet," Eur. Phys. J. D 15, 237-244 (2001).
[CrossRef]

Chu, S.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, (1987).
[CrossRef] [PubMed]

Clairon, A.

O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, and A. Clairon, "Observation of a new magneto-optical trap," EPL (Europhys. Lett.)  20, 687-691 (1992).
[CrossRef]

Clifford, M. A.

M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom, and K. Dholakia, "Realization of a mirror magneto-optical trap," J. Mod. Opt. 48, 1123-1128 (2001).

Cornell, E. A.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a Bose-Einstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

Corwin, K. L.

Cotter, J. P.

Coyle, S.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Dalibard, J.

W. Wohlleben, F. Chevy, K. Madison, and J. Dalibard, "An atom faucet," Eur. Phys. J. D 15, 237-244 (2001).
[CrossRef]

Dholakia, K.

M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom, and K. Dholakia, "Realization of a mirror magneto-optical trap," J. Mod. Opt. 48, 1123-1128 (2001).

Emile, O.

O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, and A. Clairon, "Observation of a new magneto-optical trap," EPL (Europhys. Lett.)  20, 687-691 (1992).
[CrossRef]

Epstein, R. J.

Folman, R.

R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling cold atoms using nanofabricated surfaces: Atom chips," Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Ghanem, M. A.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

H¨ansel, W.

J. Reichel, W. Hansel, and T. W. Hansch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Hand, C. F.

Hansch, T. W.

J. Reichel, W. Hansel, and T. W. Hansch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Harber, D. M.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a Bose-Einstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

Hessmo, B.

R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling cold atoms using nanofabricated surfaces: Atom chips," Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Hinds, E. A.

Hofmann, C. S.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Jhe, W.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

Kim, J. A.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

Kruger, P.

R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling cold atoms using nanofabricated surfaces: Atom chips," Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Laliotis, A.

Lancaster, G. P. T.

M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom, and K. Dholakia, "Realization of a mirror magneto-optical trap," J. Mod. Opt. 48, 1123-1128 (2001).

Laurent, P.

O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, and A. Clairon, "Observation of a new magneto-optical trap," EPL (Europhys. Lett.)  20, 687-691 (1992).
[CrossRef]

Lee, K. I.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

Lewandowski, H. J.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a Bose-Einstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

Lu, Z. T.

Madison, K.

W. Wohlleben, F. Chevy, K. Madison, and J. Dalibard, "An atom faucet," Eur. Phys. J. D 15, 237-244 (2001).
[CrossRef]

Maier, T.

R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling cold atoms using nanofabricated surfaces: Atom chips," Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Ming, H.

B. E. Schultz, H. Ming, G. A. Noble, andW. A. vanWijngaarden, "Measurement of the rb d2 transition linewidth at ultralow temperature," Eur. Phys. J. D 48, 171-176 (2008).
[CrossRef]

Mitchell, R. H.

M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom, and K. Dholakia, "Realization of a mirror magneto-optical trap," J. Mod. Opt. 48, 1123-1128 (2001).

Nadir, A.

O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, and A. Clairon, "Observation of a new magneto-optical trap," EPL (Europhys. Lett.)  20, 687-691 (1992).
[CrossRef]

Netti, M. C.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Nez, F.

F. Nez, "Optical frequency determination of the hyperfine components of the 5s1/2-5d3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
[CrossRef]

Noble, G. A.

B. E. Schultz, H. Ming, G. A. Noble, andW. A. vanWijngaarden, "Measurement of the rb d2 transition linewidth at ultralow temperature," Eur. Phys. J. D 48, 171-176 (2008).
[CrossRef]

Noh, H. R.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

Ovchinnikov, Y. B.

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, "An atomic trap based on evanescent light waves," J. Phys. B: At. Mol. Opt. Phys. 24, 3173-3178 (1991).
[CrossRef]

Phillips, W. D.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, "Multiphoton magnetooptical trap," Phys. Rev. Lett. 103, 173003 (2009).
[CrossRef] [PubMed]

Plisson, T.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, "Multiphoton magnetooptical trap," Phys. Rev. Lett. 103, 173003 (2009).
[CrossRef] [PubMed]

Pollock, S.

Porto, J. V.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, "Multiphoton magnetooptical trap," Phys. Rev. Lett. 103, 173003 (2009).
[CrossRef] [PubMed]

Prentiss, M.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, (1987).
[CrossRef] [PubMed]

Pritchard, D. E.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, (1987).
[CrossRef] [PubMed]

Raab, E. L.

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, (1987).
[CrossRef] [PubMed]

Reichel, J.

J. Reichel, W. Hansel, and T. W. Hansch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

Salomon, C.

O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, and A. Clairon, "Observation of a new magneto-optical trap," EPL (Europhys. Lett.)  20, 687-691 (1992).
[CrossRef]

Schmiedmayer, J.

R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling cold atoms using nanofabricated surfaces: Atom chips," Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

Scholten, R. E.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Schultz, B. E.

B. E. Schultz, H. Ming, G. A. Noble, andW. A. vanWijngaarden, "Measurement of the rb d2 transition linewidth at ultralow temperature," Eur. Phys. J. D 48, 171-176 (2008).
[CrossRef]

Sheludko, D. V.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Shimizu, F.

Shimizu, K.

Shul’ga, S. V.

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, "An atomic trap based on evanescent light waves," J. Phys. B: At. Mol. Opt. Phys. 24, 3173-3178 (1991).
[CrossRef]

Takuma, H.

Townes, C. H.

S. H. Autler and C. H. Townes, "Stark effect in rapidly varying fields," Phys. Rev. 100, 703-722 (1955).
[CrossRef]

Vredenbregt, E. J. D.

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Whitaker, D. L.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a Bose-Einstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

Whittaker, D. M.

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

Wieman, C. E.

Wohlleben, W.

W. Wohlleben, F. Chevy, K. Madison, and J. Dalibard, "An atom faucet," Eur. Phys. J. D 15, 237-244 (2001).
[CrossRef]

Wu, S.

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, "Multiphoton magnetooptical trap," Phys. Rev. Lett. 103, 173003 (2009).
[CrossRef] [PubMed]

Appl. Opt.

Eur. Phys. J. D

W. Wohlleben, F. Chevy, K. Madison, and J. Dalibard, "An atom faucet," Eur. Phys. J. D 15, 237-244 (2001).
[CrossRef]

B. E. Schultz, H. Ming, G. A. Noble, andW. A. vanWijngaarden, "Measurement of the rb d2 transition linewidth at ultralow temperature," Eur. Phys. J. D 48, 171-176 (2008).
[CrossRef]

Europhys. Lett.

O. Emile, F. Bardou, C. Salomon, P. Laurent, A. Nadir, and A. Clairon, "Observation of a new magneto-optical trap," EPL (Europhys. Lett.)  20, 687-691 (1992).
[CrossRef]

J. Low Temp. Phys.

H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, "Simplified system for creating a Bose-Einstein condensate," J. Low Temp. Phys. 132, 309-367 (2003).
[CrossRef]

J. Mod. Opt.

M. A. Clifford, G. P. T. Lancaster, R. H. Mitchell, F. Akerboom, and K. Dholakia, "Realization of a mirror magneto-optical trap," J. Mod. Opt. 48, 1123-1128 (2001).

J. Phys. B: At. Mol. Opt. Phys.

Y. B. Ovchinnikov, S. V. Shul’ga, and V. I. Balykin, "An atomic trap based on evanescent light waves," J. Phys. B: At. Mol. Opt. Phys. 24, 3173-3178 (1991).
[CrossRef]

Opt. Commun.

F. Nez, "Optical frequency determination of the hyperfine components of the 5s1/2-5d3/2 two-photon transitions in rubidium," Opt. Commun. 102, 432-438 (1993).
[CrossRef]

Opt. Express

Opt. Lett.

K. I. Lee, J. A. Kim, H. R. Noh, and W. Jhe, "Single-beam atom trap in a pyramidal and conical hollow mirror," Opt. Lett. 21, (1996).
[CrossRef] [PubMed]

F. Shimizu, K. Shimizu, and H. Takuma, "Four-beam laser trap of neutral atoms," Opt. Lett. 16, 339-341 (1991).
[CrossRef] [PubMed]

Phys. Rev.

S. H. Autler and C. H. Townes, "Stark effect in rapidly varying fields," Phys. Rev. 100, 703-722 (1955).
[CrossRef]

Phys. Rev. A

D. V. Sheludko, S. C. Bell, R. Anderson, C. S. Hofmann, E. J. D. Vredenbregt, and R. E. Scholten, "State-selective imaging of cold atoms," Phys. Rev. A 77, 033401 (2008).
[CrossRef]

Phys. Rev. Lett.

J. Reichel, W. Hansel, and T. W. Hansch, "Atomic micromanipulation with magnetic surface traps," Phys. Rev. Lett. 83, 3398 (1999).
[CrossRef]

S. Coyle, M. C. Netti, J. J. Baumberg, M. A. Ghanem, P. R. Birkin, P. N. Bartlett, and D. M. Whittaker, "Confined plasmons in metallic nanocavities," Phys. Rev. Lett. 87, 176801 (2001).
[CrossRef] [PubMed]

R. Folman, P. Kruger, D. Cassettari, B. Hessmo, T. Maier, and J. Schmiedmayer, "Controlling cold atoms using nanofabricated surfaces: Atom chips," Phys. Rev. Lett. 84, 4749-4752 (2000).
[CrossRef] [PubMed]

S. Wu, T. Plisson, R. C. Brown, W. D. Phillips, and J. V. Porto, "Multiphoton magnetooptical trap," Phys. Rev. Lett. 103, 173003 (2009).
[CrossRef] [PubMed]

E. L. Raab, M. Prentiss, A. Cable, S. Chu, and D. E. Pritchard, "Trapping of neutral sodium atoms with radiation pressure," Phys. Rev. Lett. 59, (1987).
[CrossRef] [PubMed]

Other

A. Vernier, S. F. Arnold, E. Riis, and A. S. Arnold, "Enhanced frequency up-conversion in Rb vapor," ArXiv e-prints (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

(Color online.) Schematic of one of the two beam paths involved in our MOT geometry. S is the incoming beam; A, B, and C are mirrors. The component marked ‘λ/4’ is a quarter-wave plate. The cold atom cloud forms in the intersection region, O. In this diagram we do not show a second, identical, beam, which provides trapping and cooling forces in the plane normal to the paper. The area of mirror A immediately adjacent to the trapped atoms is not illuminated, and can therefore be patterned or structured to explore atom–surface interactions. Inset: The lower surface of mirror A, showing the MOT beams and the sample area, which is not illuminated by any of the beams.

Fig. 2.
Fig. 2.

Image of our MOT in operation, corresponding to Fig. 1; mirror A is indicated in the picture.

Fig. 3.
Fig. 3.

(Color online.) The four-level system in 85Rb that we use to image our atoms. The MOT lasers (780 nm) and a laser at 776 nm are used to induce a ladder transition. The population decays back to the ground state, via an intermediate state, and emits a 420 nm photon in the process. The hyperfine splitting of the excited states is not drawn for clarity.

Fig. 4.
Fig. 4.

776 nm spectroscopy and locking system. (P)BS: (polarizing) beam splitter cube; λ/4: quarter-wave plate; λ/2: half-wave plate; VC: heated vapor cell; PD: filtered photodiode.

Fig. 5.
Fig. 5.

420 nm fluorescence from the vapor cell, observed on PD (see Fig. 4) as a function of the detuning of the 776 nm beam, with the cooling and repump beams locked and shifted by 80MHz with respect to the frequencies required to make a MOT. The various peaks are due the hyperfine structure in 85Rb. To obtain these data, we removed the quarter-wave plates on either end of the vapor cell, thus having linearly polarized light entering the cell from both ends.

Fig. 6.
Fig. 6.

(Color online.) 420 nm fluorescence observed on PD (solid black line, see Fig. 4) and on a PMT imaging the MOT cloud (solid red line) as a function of the detuning of the 776 nm beam. The zero on the frequency axis corresponds to the point at which the signal from the MOT cloud is highest; we lock to this point. The magnitude and sign of the shift between the two curves can be set arbitrarily by varying the magnetic field generated by the coils around the vapor cell. Inset: MOT cloud imaged at 420 nm (scale in 103 counts per second). This image is naturally background-free.

Fig. 7.
Fig. 7.

(Color online.) A sequence of four false color fluorescence images, taken at 8ms intervals, of the cloud before and after it has been given a magnetic impulse. The first shot (leftmost picture) shows the cloud just before the magnetic field is pulsed. The second, and subsequent, shots show the cloud at later times. The transfer efficiency after 24 ms is over 40%.

Metrics