Abstract

A sub-pixel image shifter is presented, for use in enhancing the spatial resolution of digital image sensors by combining multiple displaced sub-images using a super-resolution (SR) algorithm. The device uses the walk-off phenomenon in birefringent crystals to separate images with opposite polarizations by a sub-pixel displacement. A liquid crystal (LC) waveplate plus a polarizer can then select the specific image to be exposed, with fast, non-mechanical control. This cascaded device, comprising two sapphire crystals, two LCs, and a single polarizer, is capable of 2-dimensional image shift with displacements of 0.5 pixels. The experimental results show that the image registration stability can be precisely controlled within 0.05 pixels and the contrast transfer function ratio of the SR image is enhanced by up to 1.36 times compared to the original captured image. Moreover, based on the fast transition time of LCs, the displaced sub-images can be recorded in video form with a frame rate of 40 fps.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Wolf, B. Ozer, and T. Lv, “Smart Cameras as Embedded Systems,” IEEE Computer 35(9), 48–53 (2002).
    [CrossRef]
  2. M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed Embedded Smart Cameras for Surveillance Applications,” IEEE Computer 39(2), 68–75 (2006).
    [CrossRef]
  3. S. K. Nayar, “Computational Cameras: Redefining the Image,” IEEE Computer 39(8), 30–38 (2006).
    [CrossRef]
  4. M. Ben-Ezra, A. Zomet, and S. K. Nayar, “Video super-resolution using controlled subpixel detector shifts,” IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005).
    [CrossRef] [PubMed]
  5. C. Y. Gao, and N. Ahuja, “A refractive camera for acquiring stereo and super-resolution images,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision Pattern Recognition (2006), pp. 2316–2323.
  6. K. Yu, N. Park, D. Lee, and O. Solgaard, “Superresolution digital image enhancement by subpixel image translation with a scanning micromirror,” IEEE J. Sel. Top. Quantum Electron. 13(2), 304–311 (2007).
    [CrossRef]
  7. R. A. Hicks, V. T. Nasis, and T. P. Kurzweg, “Programmable imaging with two-axis micromirrors,” Opt. Lett. 32(9), 1066–1068 (2007).
    [CrossRef] [PubMed]
  8. A. Mohan, X. Huang, J. Tumblin, and R. Raskar, “Sensing increased image resolution using aperture masks,” in Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision Pattern Recognition (2008).
  9. R. F. Marcia, C. Kim, C. Eldeniz, J. Kim, D. J. Brady, and R. M. Willett, “Superimposed video disambiguation for increased field of view,” Opt. Express 16(21), 16352–16363 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-21-16352 .
    [CrossRef] [PubMed]
  10. E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: an overview,” Int. J. Imaging Syst. Technol. 14(2), 36–46 (2004).
    [CrossRef]
  11. C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
    [CrossRef]
  12. P. Vandewalle, L. Sbaiz, J. Vandewalle, and M. Vetterli, “Super-resolution from unregistered and totally aliased signals using subspace methods,” IEEE Trans. Signal Process. 55(7), 3687–3703 (2007).
    [CrossRef]
  13. D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using sub-pixel displacements,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision Pattern Recognition (1988), pp. 742–746.
  14. H. Stark and P. Oskoui, “High-resolution image recovery from image-plane arrays, using convex projections,” J. Opt. Soc. Am. A 6(11), 1715–1726 (1989).
    [CrossRef] [PubMed]
  15. K. Nishiyama, M. Okita, S. Kawaguchi, K. Teranishi, and R. Takamatsu, “32” WXGA LCD TV using OCB Mode, low temperature p-Si TFT and blinking backlight technology,” in SID Tech. Dig.36(1), 132–135 (2005).
  16. S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, ““Fast Switching Liquid Crystals for Color-Sequential LCDs, ” IEEE/OSA J, Display Technol. 3(3), 250–252 (2007).
    [CrossRef]
  17. J. M. Liu, Photonic Devices (Cambridge University Press, 2005), Chap. 1.
  18. J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
    [CrossRef]
  19. Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2323 .
    [CrossRef] [PubMed]
  20. R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-View Liquid Crystal Displays,” IEEE/OSA J Display Technol. 1(1), 3–14 (2005).
    [CrossRef]
  21. R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25(3), 795–804 (2006) (TOG).
    [CrossRef]

2008

2007

R. A. Hicks, V. T. Nasis, and T. P. Kurzweg, “Programmable imaging with two-axis micromirrors,” Opt. Lett. 32(9), 1066–1068 (2007).
[CrossRef] [PubMed]

K. Yu, N. Park, D. Lee, and O. Solgaard, “Superresolution digital image enhancement by subpixel image translation with a scanning micromirror,” IEEE J. Sel. Top. Quantum Electron. 13(2), 304–311 (2007).
[CrossRef]

P. Vandewalle, L. Sbaiz, J. Vandewalle, and M. Vetterli, “Super-resolution from unregistered and totally aliased signals using subspace methods,” IEEE Trans. Signal Process. 55(7), 3687–3703 (2007).
[CrossRef]

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, ““Fast Switching Liquid Crystals for Color-Sequential LCDs, ” IEEE/OSA J, Display Technol. 3(3), 250–252 (2007).
[CrossRef]

2006

M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed Embedded Smart Cameras for Surveillance Applications,” IEEE Computer 39(2), 68–75 (2006).
[CrossRef]

S. K. Nayar, “Computational Cameras: Redefining the Image,” IEEE Computer 39(8), 30–38 (2006).
[CrossRef]

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25(3), 795–804 (2006) (TOG).
[CrossRef]

Y. Ekinci, H. H. Solak, C. David, and H. Sigg, “Bilayer Al wire-grids as broadband and high-performance polarizers,” Opt. Express 14(6), 2323–2334 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-6-2323 .
[CrossRef] [PubMed]

2005

M. Ben-Ezra, A. Zomet, and S. K. Nayar, “Video super-resolution using controlled subpixel detector shifts,” IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005).
[CrossRef] [PubMed]

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-View Liquid Crystal Displays,” IEEE/OSA J Display Technol. 1(1), 3–14 (2005).
[CrossRef]

2004

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: an overview,” Int. J. Imaging Syst. Technol. 14(2), 36–46 (2004).
[CrossRef]

2003

C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

2002

W. Wolf, B. Ozer, and T. Lv, “Smart Cameras as Embedded Systems,” IEEE Computer 35(9), 48–53 (2002).
[CrossRef]

1989

Agrawal, A.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25(3), 795–804 (2006) (TOG).
[CrossRef]

Ben-Ezra, M.

M. Ben-Ezra, A. Zomet, and S. K. Nayar, “Video super-resolution using controlled subpixel detector shifts,” IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005).
[CrossRef] [PubMed]

Brady, D. J.

Bramberger, M.

M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed Embedded Smart Cameras for Surveillance Applications,” IEEE Computer 39(2), 68–75 (2006).
[CrossRef]

Chen, L.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

Choi, E.

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: an overview,” Int. J. Imaging Syst. Technol. 14(2), 36–46 (2004).
[CrossRef]

Choi, J.

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: an overview,” Int. J. Imaging Syst. Technol. 14(2), 36–46 (2004).
[CrossRef]

Dabrowski, R.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, ““Fast Switching Liquid Crystals for Color-Sequential LCDs, ” IEEE/OSA J, Display Technol. 3(3), 250–252 (2007).
[CrossRef]

David, C.

Deng, J.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

Deng, X.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

Doblander, A.

M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed Embedded Smart Cameras for Surveillance Applications,” IEEE Computer 39(2), 68–75 (2006).
[CrossRef]

Ekinci, Y.

Eldeniz, C.

Gauza, S.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, ““Fast Switching Liquid Crystals for Color-Sequential LCDs, ” IEEE/OSA J, Display Technol. 3(3), 250–252 (2007).
[CrossRef]

Graham, A.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

Hicks, R. A.

Hong, Q.

R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-View Liquid Crystal Displays,” IEEE/OSA J Display Technol. 1(1), 3–14 (2005).
[CrossRef]

Kang, M. G

C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Kang, M. G.

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: an overview,” Int. J. Imaging Syst. Technol. 14(2), 36–46 (2004).
[CrossRef]

Kang,, M. G.

C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Kim, C.

Kim, J.

Kurzweg, T. P.

Lee, D.

K. Yu, N. Park, D. Lee, and O. Solgaard, “Superresolution digital image enhancement by subpixel image translation with a scanning micromirror,” IEEE J. Sel. Top. Quantum Electron. 13(2), 304–311 (2007).
[CrossRef]

Liu, F.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

Lu, R.

R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-View Liquid Crystal Displays,” IEEE/OSA J Display Technol. 1(1), 3–14 (2005).
[CrossRef]

Lv, T.

W. Wolf, B. Ozer, and T. Lv, “Smart Cameras as Embedded Systems,” IEEE Computer 35(9), 48–53 (2002).
[CrossRef]

Maier, A.

M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed Embedded Smart Cameras for Surveillance Applications,” IEEE Computer 39(2), 68–75 (2006).
[CrossRef]

Marcia, R. F.

Nasis, V. T.

Nayar, S. K.

S. K. Nayar, “Computational Cameras: Redefining the Image,” IEEE Computer 39(8), 30–38 (2006).
[CrossRef]

M. Ben-Ezra, A. Zomet, and S. K. Nayar, “Video super-resolution using controlled subpixel detector shifts,” IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005).
[CrossRef] [PubMed]

Nikolov, A.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

Oskoui, P.

Ozer, B.

W. Wolf, B. Ozer, and T. Lv, “Smart Cameras as Embedded Systems,” IEEE Computer 35(9), 48–53 (2002).
[CrossRef]

Park, C.

C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Park, M. K

C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Park, M. K.

C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Park, N.

K. Yu, N. Park, D. Lee, and O. Solgaard, “Superresolution digital image enhancement by subpixel image translation with a scanning micromirror,” IEEE J. Sel. Top. Quantum Electron. 13(2), 304–311 (2007).
[CrossRef]

Park, S. C

C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

Piecek, W.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, ““Fast Switching Liquid Crystals for Color-Sequential LCDs, ” IEEE/OSA J, Display Technol. 3(3), 250–252 (2007).
[CrossRef]

Raskar, R.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25(3), 795–804 (2006) (TOG).
[CrossRef]

Rinner, B.

M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed Embedded Smart Cameras for Surveillance Applications,” IEEE Computer 39(2), 68–75 (2006).
[CrossRef]

Sbaiz, L.

P. Vandewalle, L. Sbaiz, J. Vandewalle, and M. Vetterli, “Super-resolution from unregistered and totally aliased signals using subspace methods,” IEEE Trans. Signal Process. 55(7), 3687–3703 (2007).
[CrossRef]

Schwabach, H.

M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed Embedded Smart Cameras for Surveillance Applications,” IEEE Computer 39(2), 68–75 (2006).
[CrossRef]

Sciortino, P.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

Sigg, H.

Solak, H. H.

Solgaard, O.

K. Yu, N. Park, D. Lee, and O. Solgaard, “Superresolution digital image enhancement by subpixel image translation with a scanning micromirror,” IEEE J. Sel. Top. Quantum Electron. 13(2), 304–311 (2007).
[CrossRef]

Stark, H.

Tumblin, J.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25(3), 795–804 (2006) (TOG).
[CrossRef]

Vandewalle, J.

P. Vandewalle, L. Sbaiz, J. Vandewalle, and M. Vetterli, “Super-resolution from unregistered and totally aliased signals using subspace methods,” IEEE Trans. Signal Process. 55(7), 3687–3703 (2007).
[CrossRef]

Vandewalle, P.

P. Vandewalle, L. Sbaiz, J. Vandewalle, and M. Vetterli, “Super-resolution from unregistered and totally aliased signals using subspace methods,” IEEE Trans. Signal Process. 55(7), 3687–3703 (2007).
[CrossRef]

Vetterli, M.

P. Vandewalle, L. Sbaiz, J. Vandewalle, and M. Vetterli, “Super-resolution from unregistered and totally aliased signals using subspace methods,” IEEE Trans. Signal Process. 55(7), 3687–3703 (2007).
[CrossRef]

Wang, J. J.

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

Willett, R. M.

Wolf, W.

W. Wolf, B. Ozer, and T. Lv, “Smart Cameras as Embedded Systems,” IEEE Computer 35(9), 48–53 (2002).
[CrossRef]

Wu, S. T.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, ““Fast Switching Liquid Crystals for Color-Sequential LCDs, ” IEEE/OSA J, Display Technol. 3(3), 250–252 (2007).
[CrossRef]

R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-View Liquid Crystal Displays,” IEEE/OSA J Display Technol. 1(1), 3–14 (2005).
[CrossRef]

Wu, T. X.

R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-View Liquid Crystal Displays,” IEEE/OSA J Display Technol. 1(1), 3–14 (2005).
[CrossRef]

Yu, K.

K. Yu, N. Park, D. Lee, and O. Solgaard, “Superresolution digital image enhancement by subpixel image translation with a scanning micromirror,” IEEE J. Sel. Top. Quantum Electron. 13(2), 304–311 (2007).
[CrossRef]

Zhu, X.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, ““Fast Switching Liquid Crystals for Color-Sequential LCDs, ” IEEE/OSA J, Display Technol. 3(3), 250–252 (2007).
[CrossRef]

R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-View Liquid Crystal Displays,” IEEE/OSA J Display Technol. 1(1), 3–14 (2005).
[CrossRef]

Zomet, A.

M. Ben-Ezra, A. Zomet, and S. K. Nayar, “Video super-resolution using controlled subpixel detector shifts,” IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005).
[CrossRef] [PubMed]

ACM Trans. Graph.

R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: motion deblurring using fluttered shutter,” ACM Trans. Graph. 25(3), 795–804 (2006) (TOG).
[CrossRef]

IEEE Computer

W. Wolf, B. Ozer, and T. Lv, “Smart Cameras as Embedded Systems,” IEEE Computer 35(9), 48–53 (2002).
[CrossRef]

M. Bramberger, A. Doblander, A. Maier, B. Rinner, and H. Schwabach, “Distributed Embedded Smart Cameras for Surveillance Applications,” IEEE Computer 39(2), 68–75 (2006).
[CrossRef]

S. K. Nayar, “Computational Cameras: Redefining the Image,” IEEE Computer 39(8), 30–38 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

K. Yu, N. Park, D. Lee, and O. Solgaard, “Superresolution digital image enhancement by subpixel image translation with a scanning micromirror,” IEEE J. Sel. Top. Quantum Electron. 13(2), 304–311 (2007).
[CrossRef]

J. J. Wang, J. Deng, X. Deng, F. Liu, P. Sciortino, L. Chen, A. Nikolov, and A. Graham, “Innovative high-performance nanowire-grid polarizers and integrated isolators,” IEEE J. Sel. Top. Quantum Electron. 11(1), 241–253 (2005).
[CrossRef]

IEEE Signal Process. Mag.

C. Park, M. K. Park, M. G. Kang,, S. C Park, M. K Park, and M. G Kang, “Super-resolution image reconstruction: a technical overview,” IEEE Signal Process. Mag. 20(3), 21–36 (2003).
[CrossRef]

IEEE Trans. Pattern Anal. Mach. Intell.

M. Ben-Ezra, A. Zomet, and S. K. Nayar, “Video super-resolution using controlled subpixel detector shifts,” IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005).
[CrossRef] [PubMed]

IEEE Trans. Signal Process.

P. Vandewalle, L. Sbaiz, J. Vandewalle, and M. Vetterli, “Super-resolution from unregistered and totally aliased signals using subspace methods,” IEEE Trans. Signal Process. 55(7), 3687–3703 (2007).
[CrossRef]

IEEE/OSA J Display Technol.

R. Lu, X. Zhu, S. T. Wu, Q. Hong, and T. X. Wu, “Ultrawide-View Liquid Crystal Displays,” IEEE/OSA J Display Technol. 1(1), 3–14 (2005).
[CrossRef]

IEEE/OSA J, Display Technol.

S. Gauza, X. Zhu, W. Piecek, R. Dabrowski, and S. T. Wu, ““Fast Switching Liquid Crystals for Color-Sequential LCDs, ” IEEE/OSA J, Display Technol. 3(3), 250–252 (2007).
[CrossRef]

Int. J. Imaging Syst. Technol.

E. Choi, J. Choi, and M. G. Kang, “Super-resolution approach to overcome physical limitations of imaging sensors: an overview,” Int. J. Imaging Syst. Technol. 14(2), 36–46 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Other

J. M. Liu, Photonic Devices (Cambridge University Press, 2005), Chap. 1.

D. Keren, S. Peleg, and R. Brada, “Image sequence enhancement using sub-pixel displacements,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision Pattern Recognition (1988), pp. 742–746.

K. Nishiyama, M. Okita, S. Kawaguchi, K. Teranishi, and R. Takamatsu, “32” WXGA LCD TV using OCB Mode, low temperature p-Si TFT and blinking backlight technology,” in SID Tech. Dig.36(1), 132–135 (2005).

C. Y. Gao, and N. Ahuja, “A refractive camera for acquiring stereo and super-resolution images,” in Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision Pattern Recognition (2006), pp. 2316–2323.

A. Mohan, X. Huang, J. Tumblin, and R. Raskar, “Sensing increased image resolution using aperture masks,” in Proceedings of the 2008 IEEE Computer Society Conference on Computer Vision Pattern Recognition (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic of the LC-controllable sub-pixel image shifter employed in a camera configuration. (b) Cross-section of the cascaded multi-layer structure.

Fig. 2
Fig. 2

Spectral response of the sub-pixel image shifter. The incident light is linearly polarized so as to examine the extinction ratio of the polarization switch.

Fig. 3
Fig. 3

Angle-dependent transmittance for three primary colors. The upper and lower three lines indicate the transparent and opaque state respectively. The results for the first two states are shown in (a), and the other two states are in (b).

Fig. 4
Fig. 4

Experimental imaging setup for the sub-pixel image shifter. The image shifter, with 5 mm thickness and wide working area, is placed between the camera lens and the image sensor.

Fig. 5
Fig. 5

(a) Captured images for A~D states by voltage control of two LC waveplates. Each frame has the original lower resolution of 385 × 385 pixels. (b) Illustration of the displacement accuracy of the image shifter. The displacement variation is indicated by the 0.05 pixel diameter of the added circles.

Fig. 6
Fig. 6

(a) Computed SR image with twofold up-sampling of 770 × 770 pixels via POCS method. (b) Enlarged details for comparison between bi-cubic and SR images. The bi-cubic image is up-sampled from one of 4 originally captured images by an interpolation-based method.

Fig. 7
Fig. 7

CTF analysis for quantitative comparison between bi-cubic and SR images. The CTF improvement increases with spatial frequency.

Fig. 8
Fig. 8

Displacement accuracy for different frame rates. The sub-pixel image shifter can translate the sub-images with a frame rate up to 40 fps, limited by the 5 ms exposure time and approximate 20 ms LC transition time.

Tables (1)

Tables Icon

Table 1 Expected displacement for the 4 operational states vs. LC voltage.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α = tan 1 ( n o 2 n e 2 tan θ ) θ

Metrics