Abstract

A broadband photonic instantaneous frequency measurement system utilizing four-wave mixing in highly nonlinear fiber is demonstrated. This new approach is highly stable and does not require any high-speed electronics or photodetectors. A first principles model accurately predicts the system response. Frequency measurement responses from 1 to 40 GHz are demonstrated and simple reconfiguration allows the system to operate over multiple bands.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [CrossRef]
  2. A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
    [CrossRef]
  3. R. Helkey, J. V. Twinchel, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15(6), 956–961 (1997).
    [CrossRef]
  4. R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
    [CrossRef]
  5. A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
    [CrossRef]
  6. R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
    [CrossRef]
  7. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Wideband RF photonic in-phase and quadrature-phase generation,” Opt. Lett. 33(2), 98–100 (2008).
    [CrossRef] [PubMed]
  8. L. V. T. Nguyen and D. B. Hunter, “A Photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
    [CrossRef]
  9. N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
    [CrossRef]
  10. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  11. S. Radic, D. J. Moss, and B. J. Eggleton, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools” in Optical Fiber Telecommunications V: Components and Sub-systems, I. P. Kaminow, T. Li, and A. E. Willner, ed. (Academic Press, Oxford, UK, February 2008), Chap. 20.
  12. J. Li, B. E. Olsson, M. Karlsson, and P. A Andrekson, “OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15(12), 1770–1772 (2003).
    [CrossRef]
  13. V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
    [CrossRef]
  14. J. Capmany, S. Sales, D. Pastor, and B. Ortega, “Optical mixing of microwave signals in a nonlinear semiconductor laser amplifier modulator,” Opt. Express 10(3), 183–189 (2002).
    [PubMed]
  15. M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
    [CrossRef]
  16. H. Cuckson, and P. D. Curtis, “Microwave instantaneous frequency measurement apparatus,” United States Patent 4414505, 8 Nov. (1983).
  17. G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993).
    [CrossRef]
  18. U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wavelinks,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
    [CrossRef]
  19. N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurement with improved sensitivity,” In Proceedings of IEEE International Microwave Symposium (IMS 2009), 165–168. (2009)
  20. H. Emami, N. Sarkhosh, L. A. Bui, and A. Mitchell, “Amplitude independent RF instantaneous frequency measurement system using photonic Hilbert transform,” Opt. Express 16(18), 13707–13712 (2008).
    [CrossRef] [PubMed]

2009

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

2008

2007

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

2006

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, “A Photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

2003

J. Li, B. E. Olsson, M. Karlsson, and P. A Andrekson, “OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15(12), 1770–1772 (2003).
[CrossRef]

2002

1997

R. Helkey, J. V. Twinchel, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15(6), 956–961 (1997).
[CrossRef]

1996

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wavelinks,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

1995

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[CrossRef]

1993

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993).
[CrossRef]

Andrekson, P. A

J. Li, B. E. Olsson, M. Karlsson, and P. A Andrekson, “OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15(12), 1770–1772 (2003).
[CrossRef]

Bui, L.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
[CrossRef]

Bui, L. A.

Bulla, D. A.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Capmany, J.

Choi, D.-Y.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Cole, B. F.

G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993).
[CrossRef]

Cooper, D. G.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Cox, C.

R. Helkey, J. V. Twinchel, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15(6), 956–961 (1997).
[CrossRef]

Dexter, J. L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Eggleton, B. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

Emami, H.

Esman, R. D.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Frankel, M. Y.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Fu, L.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

Gliese, U.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wavelinks,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

Goldberg, L.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Helkey, R.

R. Helkey, J. V. Twinchel, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15(6), 956–961 (1997).
[CrossRef]

Hunter, D. B.

L. V. T. Nguyen and D. B. Hunter, “A Photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

Johansson, M. E.

G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993).
[CrossRef]

Karlsson, M.

J. Li, B. E. Olsson, M. Karlsson, and P. A Andrekson, “OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15(12), 1770–1772 (2003).
[CrossRef]

Knight, G.

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[CrossRef]

Lamont, M. R. E.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Li, J.

J. Li, B. E. Olsson, M. Karlsson, and P. A Andrekson, “OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15(12), 1770–1772 (2003).
[CrossRef]

Liang, G.-C.

G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993).
[CrossRef]

Lindsay, A.

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[CrossRef]

Littler, I. C. M.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

Luan, F.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Luther-Davies, B.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

Madden, S. J.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Minasian, R. A.

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

Mitchell, A.

Moss, D. J.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

Nguyen, L. V. T.

L. V. T. Nguyen and D. B. Hunter, “A Photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

Nielsen, T. N.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wavelinks,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

Norskov, S.

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wavelinks,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

Olsson, B. E.

J. Li, B. E. Olsson, M. Karlsson, and P. A Andrekson, “OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15(12), 1770–1772 (2003).
[CrossRef]

Ortega, B.

Parent, M. G

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Pastor, D.

Pelusi, M.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Rochette, M.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

Sales, S.

Sarkhosh, N.

Seeds, A. J.

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

Shih, C.-F.

G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993).
[CrossRef]

Shokooh-Saremi, M.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

Stilwell, D

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

Suppan, L. P.

G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993).
[CrossRef]

Ta'eed, V. G.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

Twinchel, J. V.

R. Helkey, J. V. Twinchel, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15(6), 956–961 (1997).
[CrossRef]

Vo, T. D.

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Winfall, S.

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[CrossRef]

Withers, R. S.

G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993).
[CrossRef]

Yinlan Ruan, B.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

V. G. Ta'eed, M. Shokooh-Saremi, L. Fu, I. C. M. Littler, D. J. Moss, M. Rochette, B. J. Eggleton, B. Yinlan Ruan, and B. Luther-Davies, “Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides,” IEEE J. Sel. Top. Quantum Electron. 12(3), 360–370 (2006).
[CrossRef]

IEEE Photon. Technol. Lett.

R. D. Esman, M. Y. Frankel, J. L. Dexter, L. Goldberg, M. G Parent, D Stilwell, and D. G. Cooper, “Fiber-optic prism true time-delay antenna feed,” IEEE Photon. Technol. Lett. 5(11), 1347–1349 (1993).
[CrossRef]

J. Li, B. E. Olsson, M. Karlsson, and P. A Andrekson, “OTDM demultiplexer based on XPM-induced wavelength shifting in highly nonlinear fiber,” IEEE Photon. Technol. Lett. 15(12), 1770–1772 (2003).
[CrossRef]

L. V. T. Nguyen and D. B. Hunter, “A Photonic technique for microwave frequency measurement,” IEEE Photon. Technol. Lett. 18(10), 1188–1190 (2006).
[CrossRef]

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Reduced cost photonic instantaneous frequency measurement system,” IEEE Photon. Technol. Lett. 20(18), 1521–1523 (2008).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

A. J. Seeds, “Microwave photonics,” IEEE Trans. Microw. Theory Tech. 50(3), 877–887 (2002).
[CrossRef]

R. A. Minasian, “Photonic signal processing of microwave signals,” IEEE Trans. Microw. Theory Tech. 54(2), 832–846 (2006).
[CrossRef]

A. Lindsay, G. Knight, and S. Winfall, “Photonic Mixers for wide bandwidth RF receiver Applications,” IEEE Trans. Microw. Theory Tech. 43(9), 2311–2317 (1995).
[CrossRef]

G.-C. Liang, C.-F. Shih, R. S. Withers, B. F. Cole, M. E. Johansson, and L. P. Suppan., “Superconductive digital instantaneous frequency measurement subsystem,” IEEE Trans. Microw. Theory Tech. 41(12), 2368–2375 (1993).
[CrossRef]

U. Gliese, S. Norskov, and T. N. Nielsen, “Chromatic dispersion in fiber-optic microwave and millimeter-wavelinks,” IEEE Trans. Microw. Theory Tech. 44(10), 1716–1724 (1996).
[CrossRef]

J. Lightwave Technol.

R. Helkey, J. V. Twinchel, and C. Cox, “A down-conversion optical link with RF gain,” J. Lightwave Technol. 15(6), 956–961 (1997).
[CrossRef]

Nat. Photonics

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[CrossRef]

M. Pelusi, F. Luan, T. D. Vo, M. R. E. Lamont, S. J. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth,” Nat. Photonics 3(3), 139–143 (2009).
[CrossRef]

Opt. Express

Opt. Lett.

Other

H. Cuckson, and P. D. Curtis, “Microwave instantaneous frequency measurement apparatus,” United States Patent 4414505, 8 Nov. (1983).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).

S. Radic, D. J. Moss, and B. J. Eggleton, “Nonlinear Optics in Communications: From Crippling Impairment to Ultrafast Tools” in Optical Fiber Telecommunications V: Components and Sub-systems, I. P. Kaminow, T. Li, and A. E. Willner, ed. (Academic Press, Oxford, UK, February 2008), Chap. 20.

N. Sarkhosh, H. Emami, L. Bui, and A. Mitchell, “Microwave photonic instantaneous frequency measurement with improved sensitivity,” In Proceedings of IEEE International Microwave Symposium (IMS 2009), 165–168. (2009)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

IFM approaches: a) RF power summation technique [16] and b) Phase discrimination technique [17].

Fig. 2
Fig. 2

Principle of Photonic IFM system using FWM: a) Illustrative schematic system b) optical carriers of equal power at two different wavelengths; c) carriers combined and modulated with the same RF signal; d) carriers separated and differentially delayed by time Δt; e) carriers mixed are mixed using nonlinear element producing idlers which coherently combine signals from both carriers; power at idler is separated with filter and measured by DC photo-detector; f) output power oscillates with frequency providing IFM function.

Fig. 3
Fig. 3

HNLF characterization system: Lasers (LD1 & LD2) provide carriers (λ1 & λ2). Signal generator (SG) provides RF signal to modulate λ1 via Mach-Zehnder (MZ). λ1 and λ2 are combined and λ2 is delayed by a cascated fibre Bragg grating (CFBG). λ1 & λ2 are amplified by an EDFA and mixed using HNLF. The output is monitored by an OSA. An AWG separates the idler at λ1 − Δλ (where Δλ = λ2 -λ1). A broadband photo-detector (PD) and ESA measures the RF signal.

Fig. 4
Fig. 4

OSA spectrum of the output of Fig. 2. Ch2 is amplitude modulated with signal at 12 GHz and mixed with un-modulated Ch3 through the HNLF. The powers of various components are indicated.

Fig. 5
Fig. 5

(a) Optical spectrum of AWG filtered output on Channel 1; (b) Measured photonic link gain of un-mixed: Channel 2 ( + ) and mixed: Channel 1 (×). Modeled frequency response of a classic photonic link and mixed photonic link including the response of MZM, photo-detector and RF cables and mixing is also presented.

Fig. 6
Fig. 6

Experimental setup for the photonic IFM using optical mixing in a HNLF: DFB lasers (LD1 & LD2) provide carriers λ1 & λ2 which are combined using a 3 dB coupler. Signal generator (SG) modulates λ1 & λ2 via MZ. CFBG delays λ1 & λ2. The carriers are amplified and mixed using EDFA and HNLF. Output is monitored using an OSA. AWG isolates λ1 − Δλ and power is measured using a photo-detector (PD) and analyzed using a voltmeter (VDC).

Fig. 7
Fig. 7

Optical spectrum at output of the HNLF when mixing Channel 2 and Channel 3, both modulated by a RF tone (22 GHz, 10 dBm). A relative delay of 40 ps is imparted using a CFBG prior to mixing.

Fig. 8
Fig. 8

IFM frequency response a) mixing Channel 2 and Channel 3 (Δτ = 40ps); b) mixing Channel 3 and Channel 5 (Δτ = 80ps). The modeled response of Eq. (5) including the dispersion of Eq. (6) and Eq (7) respectively are also shown.

Fig. 9
Fig. 9

Frequency measurement a) mixing Ch 2 and Ch 3; and b) mixing Ch 3 and Ch 5.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E = A e j ω 1 t + B e j ( ( ω 1 + Ω ) t + φ 1 ) + B e j ( ( ω 1 Ω ) t + φ 2 ) + A e j ω 2 t + C C
E 3 = { 3 A e j ω 1 t + 4 B e j ( ( ω 1 + Ω ) t + φ 1 ) + B e j ( ( ω 1 + Ω ) t φ 2 ) + 4 B e j ( ( ω 1 Ω ) t + φ 2 ) + B e j ( ( ω 1 Ω ) t φ 1 ) + 3 A e j ω 2 t + 2 B e j ( ( ω 2 + Ω ) t + φ 1 ) + 2 B e j ( ( ω 2 + Ω ) t φ 2 ) + 2 B e j ( ( ω 2 Ω ) t + φ 2 ) + 2 B e j ( ( ω 2 Ω ) t φ 1 ) + A e j ( ω 1 Δ ω ) t + 2 B e j ( ( ω 1 Δ ω + Ω ) t + φ 1 ) + 2 B e j ( ( ω 1 Δ ω Ω ) t + φ 2 ) + A e j ( ω 2 + Δ ω ) t + B e j ( ( ω 2 + Δ ω + Ω ) t φ 2 ) + B e j ( ( ω 2 + Δ ω Ω ) t φ 1 ) } 3 A 2 + C C
E = A e j ω 1 t + B e j ( ( ω 1 + Ω ) t + φ 1 ) + B e j ( ( ω 1 Ω ) t + φ 2 ) + A e j ω 2 ( t + Δ t ) + B e j ( ( ω 2 + Ω ) ( t + Δ t ) + φ 3 ) + B e j ( ( ω 2 Ω ) ( t + Δ t ) + φ 4 ) + C C
E 3 = 3 A 2 e j ( ω 1 Δ ω ) t e j ω 2 Δ t { A + 2 B e j ( Ω t + φ 1 ) + 2 B e j ( Ω t φ 2 ) + B e j ( Ω t + Ω Δ t φ 4 ) + B e j ( Ω t + Ω Δ t + φ 3 ) + C C }
P ( ω 1 Δ ω ) { A 2 + B 2 [ 5 + 4 cos ( Ω Δ t φ 1 φ 4 ) ] + B 2 [ 5 + 4 cos ( Ω Δ t + φ 2 + φ 3 ) ] }
( φ 1 + φ 4 ) = 1.27 × 10 5 ω 2 , ( φ 2 + φ 3 ) = 2.53 × 10 5 ω 2
( ϕ 1 + ϕ 4 ) = 1.27 × 10 5 ω 2 , ( ϕ 2 + ϕ 3 ) = 3.8 × 10 5 ω 2

Metrics