Abstract

A multiple-channel multiple-function optical signal processor (MCMF-OSP) including wavelength-waveform conversions, pulsewidth tunability, and signal regeneration is realized through AND logic gate based on optical parametric processing with a pulsewidth-tunable RZ clock pump. The proposed scheme simultaneously offers four signal processing functions which are useful in wavelength-division multiplexing (WDM) transmission systems, and at network nodes with the necessity for multiple-channel data processing. After the discussions on the concept of MCMF-OSP, a proof-of concept experiment is demonstrated on four 10 Gb/s nonreturn-to-zero (NRZ) data format channels using nonlinearities in semiconductor optical amplifier (SOA) and highly nonlinear fiber (HNLF). A wavelength and waveform conversions to return-to-zero (RZ) modulation format are obtained together with pulsewidth-tunable range from 20% to 80% duty cycles for all input signals. The converted signals inherit the timing and waveform of the RZ clock pump, thus resulting in a time regeneration and large tolerance to narrow-band optical filtering (NAOF) and fiber accumulated chromatic dispersion (CD).

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, "Semiconductor laser amplifier for ultrafast all-optical signal processing," J. Opt. Soc. Am. B 14, 3204-3216 (1997).
    [CrossRef]
  2. S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
    [CrossRef]
  3. A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
    [CrossRef]
  4. Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
    [CrossRef]
  5. Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
    [CrossRef]
  6. N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, "All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror," IEEE Photon. Technol. Lett. 14, 469-471 (2002).
  7. Y. Huang, I. Glesk, R. Shankar, and P. R. Prucnal, "Simultaneous all-optical 3R regeneration scheme with improved scalability using TOAD," Opt. Express 14, 10339-10344 (2006). http://www.opticsinfobase. org/oe/abstract.cfm?URI=oe-14-22-10339.
    [CrossRef] [PubMed]
  8. S. Watanabe, S. Takeda, and T. Chikama, "Interband wavelength conversion of 320 Gb/s (32×10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer," in Proc. European Conference on Optical Communications (ECOC), (1998), 85-86.
  9. P. Devgan, R. Tang, V. S. Grigoryan, and P. Kumar, "Highly efficient multichannel wavelength conversion of DPSK signals," J. Lightwave Technol. 24, 3677-3682 (2006).
    [CrossRef]
  10. J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, 0. Tadanaga, H. Miyazawa, and M. Asobe, "Inter-band wavelength conversion of 25 GHz-spaced 1.03 Tbit/s (103×10 Gb/s) DWDM signals with small guard band and low crosstalk in PPLN waveguide," in Proc. Conference on Lasers and Electro-Optics (CLEO), (2003), CThPDB2.
  11. E. Yamazaki, A. Takada, J. Yamawaku, and T. Morioka, "Simultaneous and arbitrary wavelength conversion of WDM signals using multiple wavelength quasi phase matched LiNbO3 waveguide," in Proc. Optical Fiber Communication Conference (OFC), (2004), FL6.
  12. L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
    [CrossRef]
  13. H. S. Chung, R. Inohara, K. Nishimura and M. Usami, "All-optical multi-wavelength conversion of 10 Gbit/s NRZ/RZ signals based on SOA-MZI for WDM multicasting," Electron. Lett. 41, 230-232 (2005).
    [CrossRef]
  14. C. H. Kwok and C. Lin, "Simultaneous 4×10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 1825-1827 (2007).
    [CrossRef]
  15. M. Vasilyev and T. I. Lakoba, "All-optical multichannel 2R regeneration in a fiber-based device," Opt. Lett. 30, 1458-1460 (2005).
    [CrossRef] [PubMed]
  16. Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
    [CrossRef]
  17. P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European Conference on Optical Communications (ECOC), (1998), 475-476.
  18. Y. Yu, X. Zhang, J. B. Rosas-Fernandez, D. Huang, R. V. Pemty, and I. H. White, "Simultaneous multiple DWDM channel NRZ-to-RZ regenerative format conversion at 10 and 20 Gb/s," Opt. Express 17, 3964-3969 (2009). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-17-5-3964.
    [CrossRef] [PubMed]
  19. Y. Yu, X. Zhang, J. B. Rosas-Fernandez, D. Huang, R. V. Pemty, and I. H. White, "Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles," Opt. Express 16,16166-16171 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16166.
    [CrossRef] [PubMed]
  20. A. Sano, Y. Miyamoto, T. Kataoka, and K. Hagimoto, "Long-span repeaterless transmission systems with optical amplifiers using pulse width management," J. Lightwave Technol. 16, 977-985 (1998).
    [CrossRef]
  21. L.-S, Yan, S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and Alan E. Willner, "Performance optimization of RZ data format in WDM systems using tunable pulse-width management at the transmitter," J. Lightwave Technol. 23, 1063-1067 (2005).
    [CrossRef]
  22. M. Matsuura, N. Kishi, and T. Miki, "Performances of a widely pulsewidth-tunable multiwavelength pulse generator by a single SOA-based delayed interferometric switch," Opt. Express 13,10010-10021 (2005). http://www.opticsexpress.org/abstract.cfm?uri=oe-13-25-10010.
    [CrossRef] [PubMed]
  23. H. Nguyen Tan, M. Matsuura, and N. Kishi, "Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches," Opt. Express 16, 19063-19071 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-16-23-19063.
    [CrossRef]
  24. D. Zhou, B. C. Wang, R. J. Runser, I. Glesk, and P. R. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001).
    [CrossRef]
  25. H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. deWaardt, and G. D. Khoe, "Optical packet switching and buffering by using all-optical signal processing methods," J. Lightwave Technol. 21, 2-12 (2003).
    [CrossRef]
  26. K. I. Kang, T. G. Chang, I. Glesk, and P. R. Prucnal, "Comparison of Sagnac and Mach-Zehnder ultrafast alloptical interferometric switches based on a semiconductor resonant optical nonlinearity," Appl. Opt. 35, 417-426 (1996).
    [CrossRef] [PubMed]
  27. M. Matsuura, and N. Kishi, "All-optical wavelength and pulsewidth conversions with a Sagnac interferometer semiconductor based switch," Opt. Lett. 28, 132-134 (2003).
    [CrossRef] [PubMed]
  28. C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999).
    [CrossRef]
  29. V. Mikhailov and P. Bayvel, "All-optical multiwavelength clock recovery using integrated semiconductor amplifier array module," Electron. Lett. 37, 232-234 (2001).
    [CrossRef]
  30. J. Lasri, P. Devgan, V. S. Grigoryan, P. Kumar, "Multiwavelength NRZ-to-RZ conversion with significant timingjitter suppression and SNR improvement," Opt. Commun. 240, 293-298 (2004).
    [CrossRef]
  31. I. Brener, M. Chou, E. Chaban, K. Parameswaran, M. Fejer, and S. Kosinski, "Polarization-insensitive parametric wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides," in Proc. Optical Fiber Communication Conference (OFC), (2000), TuF11.
  32. G. W. Lu, L. K. Chen, and C. K. Chan, "Novel NRZ-to-RZ format conversion with tunable pulsewidth using phase modulator and interleaver," in Proc. Optical Fiber Communication Conference (OFC), (2006), JThB32.
  33. H. Nguyen Tan, M. Matsuura, and N. Kishi, "Pulsewidth tunable NRZ-to-RZ data format conversion by combination of SOA- and fiber-based switches," in Proc. OptoElectronics and Communications Conference (OECC/ACOFT), (2008), TuF-5.
  34. M. Vasilyev, I. Tomkos, M. Mehendale, J.-K. Rhee, A. Kobyakov, M. Ajgaonkar, S. Tsuda, and M. Sharma, "Transparent ultra-long-haul DWDM networks with broadcast-and-select OADM/OXC architecture," J. Lightwave Technol. 21, 2661-2672 (2003).
    [CrossRef]
  35. C. Caspar, H. M. Foisel, R. Freund, U. Kruger, B. Strebel, "Cascadability of arrayed-waveguide grating (de)multiplexers in transparent optical networks," in Proc. Optical Fiber Communication Conference (OFC), (1997), TuE2.
    [CrossRef]
  36. Y. Jiang, X. Tang, J. C. Cartledge, and K. Roberts, "Electronic pre-compensation of narrow optical filtering for OOK, DPSK and DQPSK modulation formats," J. Lightwave Technol. 27, 3689-3698 (2009).
    [CrossRef]

2009 (2)

2008 (2)

Y. Yu, X. Zhang, J. B. Rosas-Fernandez, D. Huang, R. V. Pemty, and I. H. White, "Single SOA based 16 DWDM channels all-optical NRZ-to-RZ format conversions with different duty cycles," Opt. Express 16,16166-16171 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-20-16166.
[CrossRef] [PubMed]

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

2007 (1)

C. H. Kwok and C. Lin, "Simultaneous 4×10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 1825-1827 (2007).
[CrossRef]

2006 (3)

2005 (4)

2004 (1)

J. Lasri, P. Devgan, V. S. Grigoryan, P. Kumar, "Multiwavelength NRZ-to-RZ conversion with significant timingjitter suppression and SNR improvement," Opt. Commun. 240, 293-298 (2004).
[CrossRef]

2003 (3)

2002 (1)

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, "All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror," IEEE Photon. Technol. Lett. 14, 469-471 (2002).

2001 (3)

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

D. Zhou, B. C. Wang, R. J. Runser, I. Glesk, and P. R. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001).
[CrossRef]

V. Mikhailov and P. Bayvel, "All-optical multiwavelength clock recovery using integrated semiconductor amplifier array module," Electron. Lett. 37, 232-234 (2001).
[CrossRef]

1999 (2)

C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999).
[CrossRef]

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

1998 (1)

1997 (2)

R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, "Semiconductor laser amplifier for ultrafast all-optical signal processing," J. Opt. Soc. Am. B 14, 3204-3216 (1997).
[CrossRef]

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

1996 (1)

1995 (1)

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

Ajgaonkar, M.

Allen, C.

C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999).
[CrossRef]

Bayvel, P.

V. Mikhailov and P. Bayvel, "All-optical multiwavelength clock recovery using integrated semiconductor amplifier array module," Electron. Lett. 37, 232-234 (2001).
[CrossRef]

Berg, K. S.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, "All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror," IEEE Photon. Technol. Lett. 14, 469-471 (2002).

Bigo, S.

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

Blow, K. J.

Calabretta, N.

Cartledge, J. C.

Chang, T. G.

Chi, N.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, "All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror," IEEE Photon. Technol. Lett. 14, 469-471 (2002).

Chung, H. S.

H. S. Chung, R. Inohara, K. Nishimura and M. Usami, "All-optical multi-wavelength conversion of 10 Gbit/s NRZ/RZ signals based on SOA-MZI for WDM multicasting," Electron. Lett. 41, 230-232 (2005).
[CrossRef]

de Waardt, H.

Demarest, K.

C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999).
[CrossRef]

Desurvire, E.

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

Devgan, P.

P. Devgan, R. Tang, V. S. Grigoryan, and P. Kumar, "Highly efficient multichannel wavelength conversion of DPSK signals," J. Lightwave Technol. 24, 3677-3682 (2006).
[CrossRef]

J. Lasri, P. Devgan, V. S. Grigoryan, P. Kumar, "Multiwavelength NRZ-to-RZ conversion with significant timingjitter suppression and SNR improvement," Opt. Commun. 240, 293-298 (2004).
[CrossRef]

deWaardt, H.

Dorren, H. J. S.

Ellis, A. D.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, "Semiconductor laser amplifier for ultrafast all-optical signal processing," J. Opt. Soc. Am. B 14, 3204-3216 (1997).
[CrossRef]

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

Freude, W.

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Glesk, I.

Grigoryan, V. S.

P. Devgan, R. Tang, V. S. Grigoryan, and P. Kumar, "Highly efficient multichannel wavelength conversion of DPSK signals," J. Lightwave Technol. 24, 3677-3682 (2006).
[CrossRef]

J. Lasri, P. Devgan, V. S. Grigoryan, P. Kumar, "Multiwavelength NRZ-to-RZ conversion with significant timingjitter suppression and SNR improvement," Opt. Commun. 240, 293-298 (2004).
[CrossRef]

Hagimoto, K.

Hill, M. T.

Huang, D.

Huang, Y.

Hui, R.

C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999).
[CrossRef]

Huijskens, F. M.

Inohara, R.

H. S. Chung, R. Inohara, K. Nishimura and M. Usami, "All-optical multi-wavelength conversion of 10 Gbit/s NRZ/RZ signals based on SOA-MZI for WDM multicasting," Electron. Lett. 41, 230-232 (2005).
[CrossRef]

Jeppesen, P.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, "All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror," IEEE Photon. Technol. Lett. 14, 469-471 (2002).

Jiang, Y.

Johnson, C.

C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999).
[CrossRef]

Kang, K. I.

Kashyap, R.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Kataoka, T.

Kelly, A. E.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Khoe, G. D.

Kishi, N.

Kobyakov, A.

Kouloumentas, Ch.

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Kumar, P.

P. Devgan, R. Tang, V. S. Grigoryan, and P. Kumar, "Highly efficient multichannel wavelength conversion of DPSK signals," J. Lightwave Technol. 24, 3677-3682 (2006).
[CrossRef]

J. Lasri, P. Devgan, V. S. Grigoryan, P. Kumar, "Multiwavelength NRZ-to-RZ conversion with significant timingjitter suppression and SNR improvement," Opt. Commun. 240, 293-298 (2004).
[CrossRef]

Kwok, C. H.

C. H. Kwok and C. Lin, "Simultaneous 4×10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 1825-1827 (2007).
[CrossRef]

Lakoba, T. I.

Lasri, J.

J. Lasri, P. Devgan, V. S. Grigoryan, P. Kumar, "Multiwavelength NRZ-to-RZ conversion with significant timingjitter suppression and SNR improvement," Opt. Commun. 240, 293-298 (2004).
[CrossRef]

Leclerc, O.

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

Leuthold, J.

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Li, Z.

Lin, C.

C. H. Kwok and C. Lin, "Simultaneous 4×10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 1825-1827 (2007).
[CrossRef]

Liu, Y.

Manning, R. J.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

R. J. Manning, A. D. Ellis, A. J. Poustie, and K. J. Blow, "Semiconductor laser amplifier for ultrafast all-optical signal processing," J. Opt. Soc. Am. B 14, 3204-3216 (1997).
[CrossRef]

Matsuura, M.

Mehendale, M.

Mikhailov, V.

V. Mikhailov and P. Bayvel, "All-optical multiwavelength clock recovery using integrated semiconductor amplifier array module," Electron. Lett. 37, 232-234 (2001).
[CrossRef]

Miki, T.

Miyamoto, Y.

Moodie, D. G.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Nakamura, S.

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

Nesset, D.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Nishimura, K.

H. S. Chung, R. Inohara, K. Nishimura and M. Usami, "All-optical multi-wavelength conversion of 10 Gbit/s NRZ/RZ signals based on SOA-MZI for WDM multicasting," Electron. Lett. 41, 230-232 (2005).
[CrossRef]

Noel, L.

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

Peddanarappagari, K. V.

C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999).
[CrossRef]

Pemty, R. V.

Petropoulos, P.

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Phillips, I. D.

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

Poustie, A. J.

Provost, L.

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Prucnal, P. R.

Rhee, J.-K.

Roberts, K.

Rosas-Fernandez, J. B.

Runser, R. J.

D. Zhou, B. C. Wang, R. J. Runser, I. Glesk, and P. R. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001).
[CrossRef]

Sano, A.

Shan, X.

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

Shankar, R.

Sharma, M.

Srivatsa, A.

Tajima, K.

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

Tang, R.

Tang, X.

Tangdiongga, E.

Tokle, T.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, "All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror," IEEE Photon. Technol. Lett. 14, 469-471 (2002).

Tomkos, I.

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

M. Vasilyev, I. Tomkos, M. Mehendale, J.-K. Rhee, A. Kobyakov, M. Ajgaonkar, S. Tsuda, and M. Sharma, "Transparent ultra-long-haul DWDM networks with broadcast-and-select OADM/OXC architecture," J. Lightwave Technol. 21, 2661-2672 (2003).
[CrossRef]

Tsuda, S.

Ueno, Y.

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

Usami, M.

H. S. Chung, R. Inohara, K. Nishimura and M. Usami, "All-optical multi-wavelength conversion of 10 Gbit/s NRZ/RZ signals based on SOA-MZI for WDM multicasting," Electron. Lett. 41, 230-232 (2005).
[CrossRef]

Vasilyev, M.

Vorreau, P.

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Wang, B. C.

D. Zhou, B. C. Wang, R. J. Runser, I. Glesk, and P. R. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001).
[CrossRef]

White, I. H.

Xu, L.

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, "All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror," IEEE Photon. Technol. Lett. 14, 469-471 (2002).

Yu, Y.

Zhang, S.

Zhang, X.

Zhou, D.

D. Zhou, B. C. Wang, R. J. Runser, I. Glesk, and P. R. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001).
[CrossRef]

Zhu, B.

C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (4)

V. Mikhailov and P. Bayvel, "All-optical multiwavelength clock recovery using integrated semiconductor amplifier array module," Electron. Lett. 37, 232-234 (2001).
[CrossRef]

A. E. Kelly, I. D. Phillips, R. J. Manning, A. D. Ellis, D. Nesset, D. G. Moodie, and R. Kashyap, "80 Gbit/s alloptical regenerative wavelength conversion using semiconductor optical amplifier based interferometer," Electron. Lett. 35, 1477-1478 (1999).
[CrossRef]

L. Noel, X. Shan, and A. D. Ellis, "Four WDM channel NRZ to RZ format conversion using a single semiconductor laser amplifier," Electron. Lett. 31, 277-278 (1995).
[CrossRef]

H. S. Chung, R. Inohara, K. Nishimura and M. Usami, "All-optical multi-wavelength conversion of 10 Gbit/s NRZ/RZ signals based on SOA-MZI for WDM multicasting," Electron. Lett. 41, 230-232 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Bigo, O. Leclerc, and E. Desurvire, "All-optical fiber signal processing and regeneration for soliton communications," IEEE J. Sel. Top. Quantum Electron. 3, 1208-1223 (1997).
[CrossRef]

IEEE Photon Technol. Lett. (1)

C. H. Kwok and C. Lin, "Simultaneous 4×10 Gb/s NRZ-to-RZ modulation format conversion in nonlinear optical loop mirror with a photonic crystal fiber," IEEE Photon. Technol. Lett. 19, 1825-1827 (2007).
[CrossRef]

IEEE Photon. Technol. Lett. (5)

Ch. Kouloumentas, P. Vorreau, L. Provost, P. Petropoulos, W. Freude, J. Leuthold, and I. Tomkos, "All-fiberized dispersion-managed multichannel regeneration at 43 Gb/s," IEEE Photon. Technol. Lett. 20, 1854-1856 (2008).
[CrossRef]

Y. Ueno, S. Nakamura, and K. Tajima, "Penalty-free error-free all-optical data pulse regeneration at 84 Gb/s by using a symmetric-Mach-Zehnder-type semiconductor regenerator," IEEE Photon. Technol. Lett. 13, 469-471 (2001).
[CrossRef]

N. Chi, L. Xu, K. S. Berg, T. Tokle, and P. Jeppesen, "All-optical wavelength conversion and multichannel 2R regeneration based on highly nonlinear dispersion-imbalanced loop mirror," IEEE Photon. Technol. Lett. 14, 469-471 (2002).

C. Johnson, K. Demarest, C. Allen, R. Hui, K. V. Peddanarappagari, and B. Zhu, "Multiwavelength all-optical clock recovery," IEEE Photon. Technol. Lett. 11, 895-597 (1999).
[CrossRef]

D. Zhou, B. C. Wang, R. J. Runser, I. Glesk, and P. R. Prucnal, "Perfectly synchronized bit-parallel WDM data transmission over a single optical fiber," IEEE Photon. Technol. Lett. 13, 382-384 (2001).
[CrossRef]

J. Lightwave Technol. (7)

H. J. S. Dorren, M. T. Hill, Y. Liu, N. Calabretta, A. Srivatsa, F. M. Huijskens, H. deWaardt, and G. D. Khoe, "Optical packet switching and buffering by using all-optical signal processing methods," J. Lightwave Technol. 21, 2-12 (2003).
[CrossRef]

A. Sano, Y. Miyamoto, T. Kataoka, and K. Hagimoto, "Long-span repeaterless transmission systems with optical amplifiers using pulse width management," J. Lightwave Technol. 16, 977-985 (1998).
[CrossRef]

L.-S, Yan, S. M. R. Motaghian Nezam, A. B. Sahin, J. E. McGeehan, T. Luo, Q. Yu, and Alan E. Willner, "Performance optimization of RZ data format in WDM systems using tunable pulse-width management at the transmitter," J. Lightwave Technol. 23, 1063-1067 (2005).
[CrossRef]

Y. Jiang, X. Tang, J. C. Cartledge, and K. Roberts, "Electronic pre-compensation of narrow optical filtering for OOK, DPSK and DQPSK modulation formats," J. Lightwave Technol. 27, 3689-3698 (2009).
[CrossRef]

M. Vasilyev, I. Tomkos, M. Mehendale, J.-K. Rhee, A. Kobyakov, M. Ajgaonkar, S. Tsuda, and M. Sharma, "Transparent ultra-long-haul DWDM networks with broadcast-and-select OADM/OXC architecture," J. Lightwave Technol. 21, 2661-2672 (2003).
[CrossRef]

P. Devgan, R. Tang, V. S. Grigoryan, and P. Kumar, "Highly efficient multichannel wavelength conversion of DPSK signals," J. Lightwave Technol. 24, 3677-3682 (2006).
[CrossRef]

Y. Liu, E. Tangdiongga, Z. Li, S. Zhang, H. de Waardt, G. D. Khoe, and H. J. S. Dorren, "Error-free all-optical wavelength conversion at 160 Gb/s using a semiconductor optical amplifier and an optical bandpass filter," J. Lightwave Technol. 24, 230-236 (2006).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

J. Lasri, P. Devgan, V. S. Grigoryan, P. Kumar, "Multiwavelength NRZ-to-RZ conversion with significant timingjitter suppression and SNR improvement," Opt. Commun. 240, 293-298 (2004).
[CrossRef]

Opt. Express (4)

Opt. Lett. (2)

Other (9)

H. Nguyen Tan, M. Matsuura, and N. Kishi, "Transmission performance of a wavelength and NRZ-to-RZ format conversion with pulsewidth tunability by combination of SOA- and fiber-based switches," Opt. Express 16, 19063-19071 (2008). http://www.opticsinfobase.org/oe/abstract.cfm?URI= oe-16-23-19063.
[CrossRef]

I. Brener, M. Chou, E. Chaban, K. Parameswaran, M. Fejer, and S. Kosinski, "Polarization-insensitive parametric wavelength converter based on cascaded nonlinearities in LiNbO3 waveguides," in Proc. Optical Fiber Communication Conference (OFC), (2000), TuF11.

G. W. Lu, L. K. Chen, and C. K. Chan, "Novel NRZ-to-RZ format conversion with tunable pulsewidth using phase modulator and interleaver," in Proc. Optical Fiber Communication Conference (OFC), (2006), JThB32.

H. Nguyen Tan, M. Matsuura, and N. Kishi, "Pulsewidth tunable NRZ-to-RZ data format conversion by combination of SOA- and fiber-based switches," in Proc. OptoElectronics and Communications Conference (OECC/ACOFT), (2008), TuF-5.

C. Caspar, H. M. Foisel, R. Freund, U. Kruger, B. Strebel, "Cascadability of arrayed-waveguide grating (de)multiplexers in transparent optical networks," in Proc. Optical Fiber Communication Conference (OFC), (1997), TuE2.
[CrossRef]

P. V. Mamyshev, "All-optical data regeneration based on self-phase modulation effect," in Proc. European Conference on Optical Communications (ECOC), (1998), 475-476.

S. Watanabe, S. Takeda, and T. Chikama, "Interband wavelength conversion of 320 Gb/s (32×10 Gb/s) WDM signal using a polarization-insensitive fiber four-wave mixer," in Proc. European Conference on Optical Communications (ECOC), (1998), 85-86.

J. Yamawaku, H. Takara, T. Ohara, K. Sato, A. Takada, T. Morioka, 0. Tadanaga, H. Miyazawa, and M. Asobe, "Inter-band wavelength conversion of 25 GHz-spaced 1.03 Tbit/s (103×10 Gb/s) DWDM signals with small guard band and low crosstalk in PPLN waveguide," in Proc. Conference on Lasers and Electro-Optics (CLEO), (2003), CThPDB2.

E. Yamazaki, A. Takada, J. Yamawaku, and T. Morioka, "Simultaneous and arbitrary wavelength conversion of WDM signals using multiple wavelength quasi phase matched LiNbO3 waveguide," in Proc. Optical Fiber Communication Conference (OFC), (2004), FL6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1.
Fig. 1.

Concept of the MCMF-OSP with wavelength-waveform conversions, pulsewidth tunability, and signal regeneration. OPP: Optical parametric processing

Fig. 2.
Fig. 2.

Large tolerances to (a) timing jitter, and (b) signal distortions induced by NAOF or CD based on AND logic function between NRZ data signal and RZ clock.

Fig. 3.
Fig. 3.

Experimental setup of proposed MCMF-OSP using nonlinearities in SOA and HNLF. OPP: Optical parametric processing

Fig. 4.
Fig. 4.

FWM spectrum of RZ clock and NRZ channels (Resolution bandwidth: 0.2 nm).

Fig. 5.
Fig. 5.

Eye diagrams of converted RZ signals with widely tuned pulsewidth in all four channels (50 ps/div).

Fig. 6.
Fig. 6.

BER characteristics of the converted RZ signals at various pulsewidths in channel 3 (a), and sensitivities at BER=10-9 of all channels against the back-to-back NRZ (b).

Fig. 7.
Fig. 7.

Experimental setups to create timing jitter by WDM interleaver (a), and signal distortion induced by NAOF (b) and CD (c) for WDM-NRZ signals before the MCMF-OSP. DLs: Delay lines.

Fig. 8.
Fig. 8.

BER characteristics at channel 2 as a function of time offset between NRZs and RZ clock as pulsewidth is set at 20 ps, 40 ps (a), and 60 ps, 80 ps (b).

Fig. 9.
Fig. 9.

Changes in eye patterns of 20 ps and 40 ps converted RZ signals as time offset is tuned to ±20 ps and ±30 ps (20 ps/div).

Fig. 10.
Fig. 10.

Perfect timing for all four WDM-NRZ signals with various jitters (leftside eye patterns) after signal processing (rightside eye patterns) (20 ps/div).

Fig. 11.
Fig. 11.

BER measurements (a) and resulting eye patterns (b–e) of 20 ps converted RZ as input NRZ signals are degraded by NAOF using two parallel 25GHz spacing AWGs. Inset of (a) shows eye pattern of input NRZ at channel 2 (20ps/div).

Fig. 12.
Fig. 12.

Receiver sensitivities of converted RZs at different pulsewidths as input NRZs are affected by various amounts of CD on SSMF.

Fig. 13.
Fig. 13.

Eye patterns of NRZ signal after 50 km SSMF (850 ps/nm accumulated CD) (a) and its converted RZ at 20 ps (b), 40 ps (c), and 60 ps (d) pulsewidths (20 ps/div).

Metrics