Abstract

We introduce a novel optical propagation delay measurement scheme for distance estimation. It is based on a ring oscillator in which the oscillation signal is replaced by the clock information contained in optical data. A clock-and-data recovery can recover the oscillation signal at the receive end. Correlation of the received pattern with the transmitted pattern and a measurement of the bit duration by a frequency counter allow to determine the distance. The scheme has been realized at 1550 nm wavelength, using an externally modulated laser, a commercial 155.52 Mb/s clock-and-data recovery and a field-programmable gate array. Short-term repeatability is <10 µm at an equivalent free-space distance of 72 m. Measurement interval is 0.1 s. At 3 km distance the relative repeatability is 8·10−8. The readout can be corrected with measured temperature data.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Yang, A. Wax, R. R. Dasari, and M. S. Feld, “2π ambiguity-free optical distance measurement with subnanometer precision with a novel phase-crossing low-coherence interferometer,” Opt. Lett. 27(2), 77–79 (2002).
    [CrossRef]
  2. M. Cui, M. G. Zeitouny, N. Bhattacharya, S. A. van den Berg, H. P. Urbach, and J. J. M. Braat, “High-accuracy long-distance measurements in air with a frequency comb laser,” Opt. Lett. 34(Iss. 13), 1982–1984 (2009).
    [CrossRef] [PubMed]
  3. A. Nemecek, K. Oberhauser, C. Seidl, and H. Zimmermann, “PIN-Diode Based Optical Distance Measurement Sensor for Low Optical Power Active Illumination,” Sensor, 2005 IEEE, Oct. 30 2005 - Nov. 3 2005, pp. 861-864, DOI 10.1109/ICSENS.2005.1597836.
    [CrossRef]
  4. R. Lange, “3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology,” Dissertation at the Univ. Siegen, Germany, 08.09.2000, http://dokumentix.ub.uni-siegen.de/opus/volltexte/2006/178/pdf/lange.pdf .
  5. D. Van Nieuwenhove, W. Van der Tempel, R. Grootjans, and M. Kuijk, “Time-of-flight Optical Ranging Sensor Based on a Current Assisted Photonic Demodulator,” Proceedings Symposium IEEE/LEOS Benelux Chapter, 2006, Eindhoven, pp. 209-212, http://leosbenelux.org/symp06/s06p209.pdf .
  6. J. M. Kovalik, W. H. Farr, C. Esproles, and H. Hemmati, “Optical Communication System with Range and Attitude Measurement Capability,” IPN Progress Report 42-161, pp. 1-6, May 15, 2005 http://tmo.jpl.nasa.gov/progress_report/42-161/161Q.pdf .
  7. J. Morcom, United States Patent US6753950, June 22, 2004, http://www.freepatentsonline.com/6753950.pdf.
  8. P. Balling, P. Křen, P. Mašika, and S. A. van den Berg, “Femtosecond frequency comb based distance measurement in air,” Opt. Express 17(Iss. 11), 9300–9313 (2009), http://www.opticsinfobase.org/oe/viewmedia.cfm?uri=oe-17-11-9300&seq=0 .
    [CrossRef] [PubMed]

2009

2002

Balling, P.

Bhattacharya, N.

Braat, J. J. M.

Cui, M.

Dasari, R. R.

Feld, M. S.

Kren, P.

Mašika, P.

Urbach, H. P.

van den Berg, S. A.

Wax, A.

Yang, C.

Zeitouny, M. G.

Opt. Express

Opt. Lett.

Other

A. Nemecek, K. Oberhauser, C. Seidl, and H. Zimmermann, “PIN-Diode Based Optical Distance Measurement Sensor for Low Optical Power Active Illumination,” Sensor, 2005 IEEE, Oct. 30 2005 - Nov. 3 2005, pp. 861-864, DOI 10.1109/ICSENS.2005.1597836.
[CrossRef]

R. Lange, “3D time-of-flight distance measurement with custom solid-state image sensors in CMOS/CCD-technology,” Dissertation at the Univ. Siegen, Germany, 08.09.2000, http://dokumentix.ub.uni-siegen.de/opus/volltexte/2006/178/pdf/lange.pdf .

D. Van Nieuwenhove, W. Van der Tempel, R. Grootjans, and M. Kuijk, “Time-of-flight Optical Ranging Sensor Based on a Current Assisted Photonic Demodulator,” Proceedings Symposium IEEE/LEOS Benelux Chapter, 2006, Eindhoven, pp. 209-212, http://leosbenelux.org/symp06/s06p209.pdf .

J. M. Kovalik, W. H. Farr, C. Esproles, and H. Hemmati, “Optical Communication System with Range and Attitude Measurement Capability,” IPN Progress Report 42-161, pp. 1-6, May 15, 2005 http://tmo.jpl.nasa.gov/progress_report/42-161/161Q.pdf .

J. Morcom, United States Patent US6753950, June 22, 2004, http://www.freepatentsonline.com/6753950.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Oversimplified block diagram, i.e. a ring oscillator.

Fig. 2
Fig. 2

Block diagram of optical distance measurement setup.

Fig. 5
Fig. 5

Actual block diagram of optical distance measurement setup.

Fig. 3
Fig. 3

PLL behavior for ω r , 1 = 2 π 130 k H z and damping factors ξ 1 = 5 , 2, 1, 0.7, 0.5, 0.3 (= traces from top to bottom at f = 1 MHz). Magnitude (left) and phase (right; normalized to 2π).

Fig. 4
Fig. 4

Complex open-loop transfer function (left) and closed-loop transfer function magnitude (right) for several examples, with parameters written there-below.

Fig. 6
Fig. 6

Measured equivalent free-space length difference as a function of time. Horizontal: 1 sample = 100 ms. Vertical: 1 division = 10 μm.

Fig. 7
Fig. 7

Logarithmic histogram (log10) of measurement error (pdf = probability density function). Bars correspond to ±1 standard deviation. Standard deviation is 6.7 μm.

Fig. 8
Fig. 8

Temperature (top trace, right scale) and measured equivalent free-space distance difference variation (bottom trace, left scale, variation with respect to the mean distance difference of about 72 m) during 2·105 s.

Fig. 9
Fig. 9

Logarithmic histogram (log10) of measurement error (pdf = probability density function) AFTER application of a linear dependence of distance on temperature. Bars correspond to ± 1 standard deviation. Standard deviation is 34 μm, total drift 270 μm. Length error 0 m corresponds to 72.3 m as per Fig. 6. Horizontal scaling: 1 means 100 μm.

Tables (1)

Tables Icon

Table 1 Path length differences and standard deviations a

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

2 d m e a s c = p m e a s T m e a s = p m e a s T m n m e a s 2 d r e f c = p r e f T r e f = p r e f T m n r e f .
d m e a s d r e f = c 2 ( p m e a s T m e a s p r e f T r e f ) = c T m 2 ( p m e a s n m e a s p r e f n r e f ) .
H P L L ( j ω ) = j 2 ξ ω ω r + ω r 2 ω 2 + j 2 ξ ω ω r + ω r 2 .
H p a t h ( j ω ) = e j ω τ .
H o ( j ω ) = H P L L 1 ( j ω ) H P L L 2 ( j ω ) H p a t h ( j ω ) .
Y ( j ω ) = X ( j ω ) + H o ( j ω ) Y ( j ω ) or
Y ( j ω ) = H ( j ω ) X ( j ω ) with H ( j ω ) = 1 1 H o ( j ω ) .
Δ d q = d T T m
σ d , q = d T 2 3 T m .

Metrics