Abstract

On-chip, planar integration of Er-doped Silicon-rich silicon nitride microdisks with SU-8 waveguide and polymer cladding is achieved. The lack of high temperature or etching processes allows back-end integration without any optical damage to the microcavity resonator. The maximum measured Q-factor at 1475.5 nm was 13,000, corresponding to calculated intrinsic resonator Q-factor of 25,000 that is limited by process-related roughness.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
    [CrossRef]
  2. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
    [CrossRef]
  3. D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
    [CrossRef]
  4. D. H. Hartman, G. R. Lalk, J. W. Howse, and R. R. Krchnavek, “Radiant cured polymer optical waveguides on printed circuit boards for photonic interconnection use,” Appl. Opt. 28(1), 40–47 (1989).
    [CrossRef] [PubMed]
  5. R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
    [CrossRef]
  6. N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
    [CrossRef]
  7. J. S. Chang, M.-K. Kim, Y.-H. Lee, J. H. Shin, and G. Y. Sung, “Fabrication and characterization of Er doped silicon-rich silicon nitride(SRSN) micro-disks,” Proc. SPIE 6897, 68970O (2008).
    [CrossRef]
  8. I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
    [CrossRef]
  9. W. J. Miniscalco and R. S. Quimby, “General procedure for the analysis of Er(3+) cross sections,” Opt. Lett. 16(4), 258–260 (1991).
    [CrossRef] [PubMed]
  10. D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
    [CrossRef]
  11. A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
    [CrossRef]
  12. L. F. Stokes, M. Chodorow, and H. J. Shaw, “All-single-mode fiber resonator,” Opt. Lett. 7(6), 288–290 (1982).
    [CrossRef] [PubMed]
  13. K. J. Vahala, Optical microcavities, Adv. Series in Appl. Phys. (World Scientific, 2004) Vol. 5, Chap. 5.
  14. S. Zheng, H. Chen, and A. W. Poon, “Microring-Resonator Cross-Connect Filters in Silicon Nitride: Rib Waveguide Dimensions Dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
    [CrossRef]
  15. D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, “High-Q measurements of fused-silica microspheres in the near infrared,” Opt. Lett. 23(4), 247–249 (1998).
    [CrossRef] [PubMed]
  16. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
    [CrossRef]
  17. M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
    [CrossRef] [PubMed]
  18. R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78(2), 023829 (2008).
    [CrossRef]
  19. S. Blair and Y. Chen, “Resonant-enhanced evanescent-wave fluorescence biosensing with cylindrical optical cavities,” Appl. Opt. 40(4), 570–582 (2001).
    [CrossRef] [PubMed]
  20. J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
    [CrossRef]
  21. J. S. Chang, I. Y. Kim, K. J. Kim, G. Y. Sung, and J. H. Shin, “Optical loss and gain characterization in Er doped SRSN,” to be submitted (2009).

2008 (4)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

J. S. Chang, M.-K. Kim, Y.-H. Lee, J. H. Shin, and G. Y. Sung, “Fabrication and characterization of Er doped silicon-rich silicon nitride(SRSN) micro-disks,” Proc. SPIE 6897, 68970O (2008).
[CrossRef]

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78(2), 023829 (2008).
[CrossRef]

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

2006 (2)

S. Zheng, H. Chen, and A. W. Poon, “Microring-Resonator Cross-Connect Filters in Silicon Nitride: Rib Waveguide Dimensions Dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

2005 (3)

D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

M. Borselli, T. J. Johnson, and O. Painter, “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13(5), 1515–1530 (2005).
[CrossRef] [PubMed]

2004 (2)

N. Daldosso, M. Melchiorri, F. Riboli, M. Girardini, G. Pucker, M. Crivellari, P. Bellutti, A. Lui, and L. Pavesi, “Comparison among various Si3N4 waveguide geometries grown within a CMOS fabrication pilot line,” J. Lightwave Technol. 22(7), 1734–1740 (2004).
[CrossRef]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

2001 (1)

2000 (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

1998 (1)

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

1991 (1)

1989 (1)

1982 (1)

1964 (1)

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Bellutti, P.

Berger, C.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Beyeler, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Blair, S.

Borselli, M.

Brongersma, M. L.

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78(2), 023829 (2008).
[CrossRef]

D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

Chang, J. S.

J. S. Chang, M.-K. Kim, Y.-H. Lee, J. H. Shin, and G. Y. Sung, “Fabrication and characterization of Er doped silicon-rich silicon nitride(SRSN) micro-disks,” Proc. SPIE 6897, 68970O (2008).
[CrossRef]

Chang, J.-S.

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

Chen, H.

S. Zheng, H. Chen, and A. W. Poon, “Microring-Resonator Cross-Connect Filters in Silicon Nitride: Rib Waveguide Dimensions Dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

Chen, Y.

Chodorow, M.

Crivellari, M.

Daldosso, N.

Dangel, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Dellmann, L.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Fauchet, P.

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

Fu, Y.

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

Gardner, D. S.

D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

Girardini, M.

Gmur, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Hamelin, R.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Hartman, D. H.

Horst, F.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Howse, J. W.

Hwang, I.-K.

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Ilchenko, V. S.

Johnson, T. J.

Kalkman, J.

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Kekatpure, R. D.

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78(2), 023829 (2008).
[CrossRef]

Kim, M.-K.

J. S. Chang, M.-K. Kim, Y.-H. Lee, J. H. Shin, and G. Y. Sung, “Fabrication and characterization of Er doped silicon-rich silicon nitride(SRSN) micro-disks,” Proc. SPIE 6897, 68970O (2008).
[CrossRef]

Kim, S.-H.

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Kim, S.-K.

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Kimble, H. J.

Kippenberg, T. J.

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Krchnavek, R. R.

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Lalk, G. R.

Lamprecht, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Lee, S. H.

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Lee, S.-Y.

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

Lee, Y.-H.

J. S. Chang, M.-K. Kim, Y.-H. Lee, J. H. Shin, and G. Y. Sung, “Fabrication and characterization of Er doped silicon-rich silicon nitride(SRSN) micro-disks,” Proc. SPIE 6897, 68970O (2008).
[CrossRef]

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Lui, A.

Mabuchi, H.

McCumber, D. E.

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Melchiorri, M.

Min, B.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Miniscalco, W. J.

Morf, T.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Offrein, B. J.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Oggioni, S.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Painter, O.

Pavesi, L.

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Polman, A.

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Poon, A. W.

S. Zheng, H. Chen, and A. W. Poon, “Microring-Resonator Cross-Connect Filters in Silicon Nitride: Rib Waveguide Dimensions Dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

Pucker, G.

Quimby, R. S.

Riboli, F.

Shaw, H. J.

Shin, J. H.

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

J. S. Chang, M.-K. Kim, Y.-H. Lee, J. H. Shin, and G. Y. Sung, “Fabrication and characterization of Er doped silicon-rich silicon nitride(SRSN) micro-disks,” Proc. SPIE 6897, 68970O (2008).
[CrossRef]

Spreafico, M.

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

Stokes, L. F.

Streed, E. W.

Suh, K.

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

Sung, G. Y.

J. S. Chang, M.-K. Kim, Y.-H. Lee, J. H. Shin, and G. Y. Sung, “Fabrication and characterization of Er doped silicon-rich silicon nitride(SRSN) micro-disks,” Proc. SPIE 6897, 68970O (2008).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Vernooy, D. W.

Yang, J.-K.

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Yang, L.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

Yang, M.-Se.

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

Yariv, A.

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

Yoo, H. G.

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

Zheng, S.

S. Zheng, H. Chen, and A. W. Poon, “Microring-Resonator Cross-Connect Filters in Silicon Nitride: Rib Waveguide Dimensions Dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

I.-K. Hwang, S.-K. Kim, J.-K. Yang, S.-H. Kim, S. H. Lee, and Y.-H. Lee, “Curved-microfiber photon coupling for photonic crystal light emitter,” Appl. Phys. Lett. 87(13), 131107 (2005).
[CrossRef]

Electron. Lett. (1)

A. Yariv, “Universal relations for coupling of optical power between microresonators and dielectric waveguides,” Electron. Lett. 36(4), 321–322 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Zheng, H. Chen, and A. W. Poon, “Microring-Resonator Cross-Connect Filters in Silicon Nitride: Rib Waveguide Dimensions Dependence,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1380–1387 (2006).
[CrossRef]

IEEE Trans. Adv. Packag. (1)

R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-Waveguide-Based Board-Level Optical Interconnect Technology for Datacom Applications,” IEEE Trans. Adv. Packag. 31(4), 759–767 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Express (1)

Opt. Lett. (3)

Opt. Mater. (1)

D. S. Gardner and M. L. Brongersma, “Microring and microdisk optical resonators using silicon nanocrystals and erbium prepared using silicon technology,” Opt. Mater. 27(5), 804–811 (2005).
[CrossRef]

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26(10), 977–986 (1994).
[CrossRef]

Phys. Rev. (1)

D. E. McCumber, “Theory of Phonon-Terminated Optical Masers,” Phys. Rev. 134(2A), A299–A306 (1964).
[CrossRef]

Phys. Rev. A (3)

T. J. Kippenberg, J. Kalkman, A. Polman, and K. J. Vahala, “Demonstration of an erbium-doped microdisk laser on a silicon chip,” Phys. Rev. A 74(5), 051802 (2006).
[CrossRef]

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004).
[CrossRef]

R. D. Kekatpure and M. L. Brongersma, “Fundamental photophysics and optical loss processes in Si-nanocrystal-doped microdisk resonators,” Phys. Rev. A 78(2), 023829 (2008).
[CrossRef]

Proc. SPIE (2)

J. H. Shin, M.-Se. Yang, J.-S. Chang, S.-Y. Lee, K. Suh, H. G. Yoo, Y. Fu, and P. Fauchet, “Materials and devices for compact optical amplification in Si photonics,” Proc. SPIE 6897, 68970N (2008).
[CrossRef]

J. S. Chang, M.-K. Kim, Y.-H. Lee, J. H. Shin, and G. Y. Sung, “Fabrication and characterization of Er doped silicon-rich silicon nitride(SRSN) micro-disks,” Proc. SPIE 6897, 68970O (2008).
[CrossRef]

Other (2)

K. J. Vahala, Optical microcavities, Adv. Series in Appl. Phys. (World Scientific, 2004) Vol. 5, Chap. 5.

J. S. Chang, I. Y. Kim, K. J. Kim, G. Y. Sung, and J. H. Shin, “Optical loss and gain characterization in Er doped SRSN,” to be submitted (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM images of SRSN microdisk integrated with SU 8 waveguide with resonator-waveguide gap of (a) 330, (b) 530, and (c) 630 nm before cladding. (d) Optical microscope image of the microdisk with 800 nm gap after polymer cladding. Note the uniformity of the cladding layer, including the disk-waveguide gap.

Fig. 2
Fig. 2

The calculated |E|2-field distributions of the TE-like and TM-like fundamental modes of the integrated structure, with an azimuthal number of 90 and 86, respectively. The diameter of the disk is 25 μm with a total thickness of 680 nm (SRSN:Er 490 nm/thermal oxide 190 nm). The waveguide is 2.3 μm wide and 2.2 μm high, and is just touching the disk (disk-waveguide gap of 0 nm).

Fig. 3
Fig. 3

(a) The transmission spectrum of an integrated microdisk with a resonator-waveguide gap of 800 nm. (c) The transmission dip with the maximum intrinsic Q at wavelength 1475.5 nm in detail. (b) The transmission dip at 1487.8 nm from the same disk, but obtained via tapered fiber coupling method prior to waveguide integration and cladding.

Fig. 4
Fig. 4

(a) Top surface roughness data of the fully fabricated microdisk obtained by AFM on a 2 μm square grid. The rms roughness is 1.15 ± 0.01 nm. (b) The correlation function obtained from the AFM data, showing a statistical correlation length of 25 nm. (c), (d) SEM images showing sidewall roughness of microdisks. The rms roughness is as large as 10 nm.

Fig. 5
Fig. 5

Transmission spectrum of an over-coupled integrated structure showing the resonance dips, and corresponding Er3+ emission peaks at the same wavelength obtained by pumping the microdisk with a 1475 nm laser diode via the integrated waveguide. The widths of emission peaks are limited by OSA resolution, set at 1.0 nm.

Tables (1)

Tables Icon

Table 1 The coupling coefficient (κ) and intrinsic cavity Q-factors with and without Er, determined from the transmission spectra by fitting the transmission Eq. (1) [12].

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T =    ( 1 γ o )   [ 1 κ { 1 ( 1 γ o ) e 2 ( α o + α E r ) L } 1 + ( 1 γ o ) ( 1 κ )   e 2 ( α o + α E r ) L 2   1 γ o 1 κ    e ( α o + α E r ) L cos ( β L ) ]

Metrics