Abstract

We present a novel method to measure the chromatic dispersion of fibers with lengths of several kilometers. The technique is based on a rapidly swept Fourier domain mode locked laser driven at 50kHz repetition rate. Amplitude modulation with 400MHz and phase analysis yield the dispersion values over a 130nm continuous wavelength tuning range covering C and L band. The high acquisition speed of 10µs for individual wavelength-resolved traces Δt(λ) can reduce effects caused by thermal drift and acoustic vibrations. It enables real-time monitoring with update rates >100Hz even when averaging several hundred acquisitions for improved accuracy.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
    [CrossRef] [PubMed]
  2. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
    [CrossRef] [PubMed]
  3. P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
    [CrossRef] [PubMed]
  4. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007).
    [CrossRef] [PubMed]
  5. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 (2007).
    [CrossRef] [PubMed]
  6. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
    [PubMed]
  7. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
    [CrossRef] [PubMed]
  8. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 (2007).
    [CrossRef]
  9. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
    [CrossRef]
  10. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 (2006).
    [CrossRef] [PubMed]
  11. A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 (1991).
    [CrossRef]
  12. L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
    [CrossRef]
  13. L. G. Cohen and C. Lin, “Pulse delay measurements in zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 (1977).
    [CrossRef] [PubMed]
  14. C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 (1980).
    [CrossRef]
  15. A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 (1979).
    [CrossRef] [PubMed]
  16. B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
    [CrossRef]
  17. S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 (1989).
    [CrossRef]
  18. J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007).
    [CrossRef]
  19. K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 (2005).
    [CrossRef]
  20. M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 (1987).
    [CrossRef]
  21. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008).
    [CrossRef] [PubMed]
  22. K. S. Abedin, M. Hyodo, and N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25(5), 299–301 (2000).
    [CrossRef] [PubMed]

2009

2008

2007

2006

2005

K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 (2005).
[CrossRef]

2000

1993

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

1991

A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 (1991).
[CrossRef]

1989

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 (1989).
[CrossRef]

1987

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 (1987).
[CrossRef]

1985

L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
[CrossRef]

1981

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[CrossRef]

1980

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 (1980).
[CrossRef]

1979

A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 (1979).
[CrossRef] [PubMed]

1977

Abedin, K. S.

K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 (2005).
[CrossRef]

K. S. Abedin, M. Hyodo, and N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25(5), 299–301 (2000).
[CrossRef] [PubMed]

Adler, D. C.

Aguirre, A. D.

An, X.

Andrews, P. M.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

Barry, S. E.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

Belding, J.

Benner, A.

A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 (1991).
[CrossRef]

Biedermann, B. R.

Bo?dtker, E.

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Cable, A. E.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

Caswell, A. W.

Chen, Y.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

Chen, Z. P.

Christensen, B.

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Cohen, L. G.

L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
[CrossRef]

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 (1980).
[CrossRef]

L. G. Cohen and C. Lin, “Pulse delay measurements in zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 (1977).
[CrossRef] [PubMed]

Daikoku, K.

A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 (1979).
[CrossRef] [PubMed]

Eigenwillig, C. M.

French, W. G.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 (1980).
[CrossRef]

Fujimoto, J. G.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008).
[CrossRef] [PubMed]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[CrossRef] [PubMed]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 (2007).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

Fujise, M.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 (1987).
[CrossRef]

Gargesha, M.

Herold, R. E.

Horiuchi, Y.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 (1989).
[CrossRef]

Huang, S. W.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007).
[CrossRef] [PubMed]

Huber, R.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
[CrossRef] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 (2008).
[CrossRef] [PubMed]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 (2007).
[CrossRef]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

Huber, R. A.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007).
[CrossRef] [PubMed]

Hult, J.

Hyodo, M.

Iwamoto, Y.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 (1987).
[CrossRef]

Jacobsen, G.

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Jenkins, M. W.

Jeon, M. Y.

Jeong, M. Y.

Jiang, J.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

Jung, E. J.

Jung, W.

Kaminski, C. F.

Kim, C. S.

Kim, D. Y.

Kim, M. K.

Klein, T.

Kranendonk, L. A.

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 (2007).
[CrossRef]

Kuwazuru, M.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 (1987).
[CrossRef]

Lee, J. Y.

Lin, C.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 (1980).
[CrossRef]

L. G. Cohen and C. Lin, “Pulse delay measurements in zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 (1977).
[CrossRef] [PubMed]

Mark, J.

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

Mochizuki, K.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 (1989).
[CrossRef]

Nunokawa, M.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 (1987).
[CrossRef]

Okura, Y.

Onodera, N.

Onozato, M. L.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

Palte, G.

Presby, H. M.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 (1980).
[CrossRef]

Rollins, A. M.

Rothenberg, F.

Ryu, S.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 (1989).
[CrossRef]

Sanders, S. T.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 (2007).
[CrossRef]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

Seikai, S.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[CrossRef]

Shibata, N.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[CrossRef]

Srinivasan, V. J.

Sugimura, A.

A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 (1979).
[CrossRef] [PubMed]

Tateda, M.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[CrossRef]

Urata, Y.

Watanabe, M.

Watt, R. S.

Wieser, W.

Wilson, D. L.

Wojtkowski, M.

Appl. Opt.

Electron. Lett.

A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 (1991).
[CrossRef]

K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 (2005).
[CrossRef]

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 (1993).
[CrossRef]

IEEE J. Quantum Electron.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 (1980).
[CrossRef]

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 (1981).
[CrossRef]

J. Lightwave Technol.

L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 (1985).
[CrossRef]

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 (1987).
[CrossRef]

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 (1989).
[CrossRef]

J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 (2007).
[CrossRef]

Lab. Invest.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 (2008).
[CrossRef] [PubMed]

Opt. Express

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 (2007).
[CrossRef] [PubMed]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 (2007).
[CrossRef] [PubMed]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 (2008).
[PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 (2007).
[CrossRef] [PubMed]

J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 (2006).
[CrossRef] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 (2006).
[CrossRef] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 (2009).
[CrossRef] [PubMed]

Opt. Lett.

Proc. Combust. Inst.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 (2007).
[CrossRef]

Rev. Sci. Instrum.

A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 (1979).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ultra-rapid dispersion measurement setup consisting of an FDML laser (left) and the dispersion measurement part (right).

Fig. 2
Fig. 2

Left: Spectrum of the FDML laser measured with the OSA: (A) full bidirectional FDML operation, (B) after SOA current modulation to suppress the backward sweep, (C) during wavelength calibration. Right: Relationship between oscilloscope samples and wavelength.

Fig. 3
Fig. 3

Left: Dispersion measurements for various fibers acquired with the ultra-rapid method, average of 256 FDML wavelength sweeps (lines). The measurements include dispersion shifted fiber (DSF, Fujikura FutureGuide-DS), dispersion compensation fiber (DCF), Raman fiber (both from OFS), and different lengths of standard SMF. The SMF measurements were shifted by −50ps and −100ps to be distinguishable. Discrete data points + and × acquired with the “pulse method” (see text). Right: Baseline measurement without any fiber inserted, 256 sweeps averaged.

Fig. 4
Fig. 4

Comparison of different measurements taken with the ultra-rapid dispersion measurement method. Left: Setup S1 with 2km DSF versus S2 for 6km DSF. Right: 50km SMF measured with setup S1 compared to 1km, 4km and 50km SMF measured with S2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t ) = u n w r a p [ arc tan ( H ( U ( t ) ) U ( t ) ) ] ,
Δ t ( λ ) = ϕ f i b e r 1 [ ϕ r e f ( t ( λ ) ) ] t ( λ ) + c o n s t .
D ( λ ) = S 0 4 ( λ λ 0 4 λ 3 )

Metrics