Abstract

We present a novel method to measure the chromatic dispersion of fibers with lengths of several kilometers. The technique is based on a rapidly swept Fourier domain mode locked laser driven at 50kHz repetition rate. Amplitude modulation with 400MHz and phase analysis yield the dispersion values over a 130nm continuous wavelength tuning range covering C and L band. The high acquisition speed of 10µs for individual wavelength-resolved traces Δt(λ) can reduce effects caused by thermal drift and acoustic vibrations. It enables real-time monitoring with update rates >100Hz even when averaging several hundred acquisitions for improved accuracy.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical frequency conversion of an amplified Fourier Domain Mode Locked (FDML) laser

Rainer Leonhardt, Benjamin R. Biedermann, Wolfgang Wieser, and Robert Huber
Opt. Express 17(19) 16801-16808 (2009)

Wavelength swept amplified spontaneous emission source

Christoph M. Eigenwillig, Benjamin R. Biedermann, Wolfgang Wieser, and Robert Huber
Opt. Express 17(21) 18794-18807 (2009)

Long distance fiber Bragg grating strain sensor interrogation using a high speed Raman-based Fourier domain mode-locked fiber laser with recycled residual Raman pump

Sunduck Kim, Oh-Jang Kwon, Hyeong-Seok Lee, Chang-Seok Kim, and Young-Geun Han
Opt. Express 21(11) 13402-13407 (2013)

References

  • View by:
  • |
  • |
  • |

  1. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 ( 2006).
    [Crossref] [PubMed]
  2. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 ( 2009).
    [Crossref] [PubMed]
  3. P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
    [Crossref] [PubMed]
  4. S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 ( 2007).
    [Crossref] [PubMed]
  5. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 ( 2007).
    [Crossref] [PubMed]
  6. E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 ( 2008).
    [PubMed]
  7. L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 ( 2007).
    [Crossref] [PubMed]
  8. L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 ( 2007).
    [Crossref]
  9. M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 ( 1981).
    [Crossref]
  10. J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 ( 2006).
    [Crossref] [PubMed]
  11. A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 ( 1991).
    [Crossref]
  12. L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 ( 1985).
    [Crossref]
  13. L. G. Cohen and C. Lin, “Pulse delay measurements in zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 ( 1977).
    [Crossref] [PubMed]
  14. C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 ( 1980).
    [Crossref]
  15. A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 ( 1979).
    [Crossref] [PubMed]
  16. B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 ( 1993).
    [Crossref]
  17. S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 ( 1989).
    [Crossref]
  18. J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 ( 2007).
    [Crossref]
  19. K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 ( 2005).
    [Crossref]
  20. M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 ( 1987).
    [Crossref]
  21. B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 ( 2008).
    [Crossref] [PubMed]
  22. K. S. Abedin, M. Hyodo, and N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25(5), 299–301 ( 2000).
    [Crossref] [PubMed]

2009 (1)

2008 (3)

2007 (5)

2006 (2)

2005 (1)

K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 ( 2005).
[Crossref]

2000 (1)

1993 (1)

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 ( 1993).
[Crossref]

1991 (1)

A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 ( 1991).
[Crossref]

1989 (1)

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 ( 1989).
[Crossref]

1987 (1)

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 ( 1987).
[Crossref]

1985 (1)

L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 ( 1985).
[Crossref]

1981 (1)

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 ( 1981).
[Crossref]

1980 (1)

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 ( 1980).
[Crossref]

1979 (1)

A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 ( 1979).
[Crossref] [PubMed]

1977 (1)

Abedin, K. S.

K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 ( 2005).
[Crossref]

K. S. Abedin, M. Hyodo, and N. Onodera, “Measurement of the chromatic dispersion of an optical fiber by use of a Sagnac interferometer employing asymmetric modulation,” Opt. Lett. 25(5), 299–301 ( 2000).
[Crossref] [PubMed]

Adler, D. C.

Aguirre, A. D.

An, X.

Andrews, P. M.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

Barry, S. E.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

Belding, J.

Benner, A.

A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 ( 1991).
[Crossref]

Biedermann, B. R.

Bo?dtker, E.

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 ( 1993).
[Crossref]

Cable, A. E.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

Caswell, A. W.

Chen, Y.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

Chen, Z. P.

Christensen, B.

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 ( 1993).
[Crossref]

Cohen, L. G.

L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 ( 1985).
[Crossref]

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 ( 1980).
[Crossref]

L. G. Cohen and C. Lin, “Pulse delay measurements in zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 ( 1977).
[Crossref] [PubMed]

Daikoku, K.

A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 ( 1979).
[Crossref] [PubMed]

Eigenwillig, C. M.

French, W. G.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 ( 1980).
[Crossref]

Fujimoto, J. G.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 ( 2008).
[Crossref] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 ( 2007).
[Crossref] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 ( 2007).
[Crossref]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 ( 2007).
[Crossref] [PubMed]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 ( 2007).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 ( 2006).
[Crossref] [PubMed]

Fujise, M.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 ( 1987).
[Crossref]

Gargesha, M.

Herold, R. E.

Horiuchi, Y.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 ( 1989).
[Crossref]

Huang, S. W.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 ( 2007).
[Crossref] [PubMed]

Huber, R.

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 ( 2009).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, G. Palte, D. C. Adler, V. J. Srinivasan, J. G. Fujimoto, and R. Huber, “Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation,” Opt. Lett. 33(21), 2556–2558 ( 2008).
[Crossref] [PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 ( 2007).
[Crossref] [PubMed]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 ( 2007).
[Crossref] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 ( 2007).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 ( 2006).
[Crossref] [PubMed]

Huber, R. A.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 ( 2007).
[Crossref] [PubMed]

Hult, J.

Hyodo, M.

Iwamoto, Y.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 ( 1987).
[Crossref]

Jacobsen, G.

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 ( 1993).
[Crossref]

Jenkins, M. W.

Jeon, M. Y.

Jeong, M. Y.

Jiang, J.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

Jung, E. J.

Jung, W.

Kaminski, C. F.

Kim, C. S.

Kim, D. Y.

Kim, M. K.

Klein, T.

Kranendonk, L. A.

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 ( 2007).
[Crossref] [PubMed]

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 ( 2007).
[Crossref]

Kuwazuru, M.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 ( 1987).
[Crossref]

Lee, J. Y.

Lin, C.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 ( 1980).
[Crossref]

L. G. Cohen and C. Lin, “Pulse delay measurements in zero material dispersion wavelength region for optical fibers,” Appl. Opt. 16(12), 3136–3139 ( 1977).
[Crossref] [PubMed]

Mark, J.

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 ( 1993).
[Crossref]

Mochizuki, K.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 ( 1989).
[Crossref]

Nunokawa, M.

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 ( 1987).
[Crossref]

Okura, Y.

Onodera, N.

Onozato, M. L.

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

Palte, G.

Presby, H. M.

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 ( 1980).
[Crossref]

Rollins, A. M.

Rothenberg, F.

Ryu, S.

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 ( 1989).
[Crossref]

Sanders, S. T.

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 ( 2007).
[Crossref]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 ( 2007).
[Crossref] [PubMed]

Seikai, S.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 ( 1981).
[Crossref]

Shibata, N.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 ( 1981).
[Crossref]

Srinivasan, V. J.

Sugimura, A.

A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 ( 1979).
[Crossref] [PubMed]

Tateda, M.

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 ( 1981).
[Crossref]

Urata, Y.

Watanabe, M.

Watt, R. S.

Wieser, W.

Wilson, D. L.

Wojtkowski, M.

Appl. Opt. (1)

Electron. Lett. (3)

A. Benner, “Optical Fiber Dispersion Measurement Using Color Center Laser,” Electron. Lett. 27(19), 1748–1750 ( 1991).
[Crossref]

K. S. Abedin, “Rapid, cost-effective measurement of chromatic dispersion of optical fibre over 1440-1625 nm using Sagnac interferometer,” Electron. Lett. 41(8), 469–471 ( 2005).
[Crossref]

B. Christensen, J. Mark, G. Jacobsen, and E. Bo̸dtker, “Simpel dispersion measurement technique with high resolution,” Electron. Lett. 29, 132–134 ( 1993).
[Crossref]

IEEE J. Quantum Electron. (2)

C. Lin, L. G. Cohen, W. G. French, and H. M. Presby, “Measuring Dispersion in Single-Mode Fibers in the 1.1-1.3-mu-m Spectral Region - Pulse Synchronization Technique,” IEEE J. Quantum Electron. 16(1), 33–36 ( 1980).
[Crossref]

M. Tateda, N. Shibata, and S. Seikai, “Interferometric method for chromatic dispersion measurement in a single-mode optical fiber,” IEEE J. Quantum Electron. 17(3), 404–407 ( 1981).
[Crossref]

J. Lightwave Technol. (4)

L. G. Cohen, “Comparison of Single-Mode Fiber Dispersion Measurement Techniques,” J. Lightwave Technol. 3(5), 958–966 ( 1985).
[Crossref]

M. Fujise, M. Kuwazuru, M. Nunokawa, and Y. Iwamoto, “Highly Accurate Long-Span Chromatic Dispersion Measurement System by a New Physe-Shift Technique,” J. Lightwave Technol. 5(6), 751–758 ( 1987).
[Crossref]

S. Ryu, Y. Horiuchi, and K. Mochizuki, “Novel Chromatic Dispersion Measurement Method Over Continuous Gigahertz Tuning Range,” J. Lightwave Technol. 7(8), 1177–1180 ( 1989).
[Crossref]

J. Hult, R. S. Watt, and C. F. Kaminski, “Dispersion measurement in optical fibers using supercontinuum pulses,” J. Lightwave Technol. 25(3), 820–824 ( 2007).
[Crossref]

Lab. Invest. (1)

P. M. Andrews, Y. Chen, M. L. Onozato, S. W. Huang, D. C. Adler, R. A. Huber, J. Jiang, S. E. Barry, A. E. Cable, and J. G. Fujimoto, “High-resolution optical coherence tomography imaging of the living kidney,” Lab. Invest. 88(4), 441–449 ( 2008).
[Crossref] [PubMed]

Opt. Express (7)

S. W. Huang, A. D. Aguirre, R. A. Huber, D. C. Adler, and J. G. Fujimoto, “Swept source optical coherence microscopy using a Fourier domain mode-locked laser,” Opt. Express 15(10), 6210–6217 ( 2007).
[Crossref] [PubMed]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and A. M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier Domain Mode Locked laser,” Opt. Express 15(10), 6251–6267 ( 2007).
[Crossref] [PubMed]

E. J. Jung, C. S. Kim, M. Y. Jeong, M. K. Kim, M. Y. Jeon, W. Jung, and Z. P. Chen, “Characterization of FBG sensor interrogation based on a FDML wavelength swept laser,” Opt. Express 16(21), 16552–16560 ( 2008).
[PubMed]

L. A. Kranendonk, X. An, A. W. Caswell, R. E. Herold, S. T. Sanders, R. Huber, J. G. Fujimoto, Y. Okura, and Y. Urata, “High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy,” Opt. Express 15(23), 15115–15128 ( 2007).
[Crossref] [PubMed]

J. Y. Lee and D. Y. Kim, “Versatile chromatic dispersion measurement of a single mode fiber using spectral white light interferometry,” Opt. Express 14(24), 11608–11615 ( 2006).
[Crossref] [PubMed]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography,” Opt. Express 14(8), 3225–3237 ( 2006).
[Crossref] [PubMed]

B. R. Biedermann, W. Wieser, C. M. Eigenwillig, T. Klein, and R. Huber, “Dispersion, coherence and noise of Fourier domain mode locked lasers,” Opt. Express 17(12), 9947–9961 ( 2009).
[Crossref] [PubMed]

Opt. Lett. (2)

Proc. Combust. Inst. (1)

L. A. Kranendonk, R. Huber, J. G. Fujimoto, and S. T. Sanders, “Wavelength-agile H2O absorption spectrometer for thermometry of general combustion gases,” Proc. Combust. Inst. 31(1), 783–790 ( 2007).
[Crossref]

Rev. Sci. Instrum. (1)

A. Sugimura and K. Daikoku, “Wavelength Dispersion of Optical Fibers Directly Measured by Difference Method” in the 0.8-1.6 mu-m Range,” Rev. Sci. Instrum. 50(3), 343–346 ( 1979).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Ultra-rapid dispersion measurement setup consisting of an FDML laser (left) and the dispersion measurement part (right).

Fig. 2
Fig. 2

Left: Spectrum of the FDML laser measured with the OSA: (A) full bidirectional FDML operation, (B) after SOA current modulation to suppress the backward sweep, (C) during wavelength calibration. Right: Relationship between oscilloscope samples and wavelength.

Fig. 3
Fig. 3

Left: Dispersion measurements for various fibers acquired with the ultra-rapid method, average of 256 FDML wavelength sweeps (lines). The measurements include dispersion shifted fiber (DSF, Fujikura FutureGuide-DS), dispersion compensation fiber (DCF), Raman fiber (both from OFS), and different lengths of standard SMF. The SMF measurements were shifted by −50ps and −100ps to be distinguishable. Discrete data points + and × acquired with the “pulse method” (see text). Right: Baseline measurement without any fiber inserted, 256 sweeps averaged.

Fig. 4
Fig. 4

Comparison of different measurements taken with the ultra-rapid dispersion measurement method. Left: Setup S1 with 2km DSF versus S2 for 6km DSF. Right: 50km SMF measured with setup S1 compared to 1km, 4km and 50km SMF measured with S2.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( t ) = u n w r a p [ arc tan ( H ( U ( t ) ) U ( t ) ) ] ,
Δ t ( λ ) = ϕ f i b e r 1 [ ϕ r e f ( t ( λ ) ) ] t ( λ ) + c o n s t .
D ( λ ) = S 0 4 ( λ λ 0 4 λ 3 )

Metrics