Abstract

Optical ridge type waveguides based on UV-curable polymer were fabricated by imprinting method. Positive tone resist patterned on a silicon wafer was used as a mould. The characterization of waveguides was carried out by coupling TE-polarized light from a tapered fiber into a waveguide with 30 mm length and mapping the intensity distribution with another tapered fiber at the output facet of a waveguide. Proper single- or multimode operation was observed depending on the waveguide width being either 2 µm or 6 µm. Experimental observations on the mode profiles were also supported by the simulation results. Average power transmissions of 32% at 1530 nm wavelength and 45% at 1310 nm wavelength were characterized. The results suggest that the simple mould fabrication process might be a useful technique for device prototyping and that the performance of replicated waveguides can meet the requirements for certain applications.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
    [CrossRef]
  2. L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
    [CrossRef]
  3. H. Lan, Y. Ding, H. Liu, and B. Lu, “Review of the wafer stage for nanoimprint lithography,” Microelectron. Eng. 84(4), 684–688 (2007).
    [CrossRef]
  4. K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
    [CrossRef]
  5. S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhöfer, “Replicated Optical MEMS in Sol-Gel Materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
    [CrossRef]
  6. J. Albero, L. Nieradko, C. Gorecki, H. Ottevaere, V. Gomez, H. Thienpont, J. Pietarinen, B. Päivänranta, and N. Passilly, “Fabrication of spherical microlenses by a combination of isotropic wet etching of silicon and molding techniques,” Opt. Express 17(8), 6283–6292 (2009).
    [CrossRef] [PubMed]
  7. T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low Cost Nanoimprinted Polymer Waveguides,” in IEEE Conference Proceedings on Optoelectronic and Microelectronic Materials and Devices (2008), pp. 185–188.
  8. C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer Microring Resonators for Biochemical Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
    [CrossRef]
  9. W.-J. Lee, J. W. Lim,S. H. Hwang, and B. S. Rho, “Imprint Master Fabricated by Ultra Precision Machining for Optical Waveguide,” in IEEE Proceedings of Opto-Electronics and Communications Conference and the Australian Conference on Optical (2008), pp. 1–2
  10. S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
    [CrossRef]
  11. J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009).
    [CrossRef]
  12. K.-J. Byeon, S.-Y. Hwang, and H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography,” Appl. Phys. Lett. 91(9), 091106 (2007).
    [CrossRef]
  13. J. T. Kim, J. J. Ju, S. Park, and M.-H. Lee, “O/E Integration of Polymer Waveguide Devices by Using Replication Technology,” IEEE J. Sel. Top. Quantum Electron. 13(2), 177–184 (2007).
    [CrossRef]
  14. H. J. Levinson, Principles of Lithography (SPIE Press, 2005), Chap. 2.
  15. Datasheet for Ormoclad, Microresist Technology, http://www.microresist.de/products/ormocers/pdf/pi_ormocore_clad_en_07062201_ls_neu.pdf
  16. FIMMWAVE software by Photon Design.
  17. G. Keiser, Optical fiber communications (McGraw Hill Companies, 2000)
  18. G. T. Reed, and A. P. Knights, Silicon photonics (Wiley, 2004)
  19. D. K. Sparacin, S. J. Spector, and L. C. Kimerling, “Silicon Waveguide Sidewall Smoothing by Wet Chemical Oxidation,” J. Lightwave Technol. 23(8), 2455–2461 (2005).
    [CrossRef]
  20. K. P. Yap, A. É. Delage, J. Lapointe, B. Lamontagne, J. H. Schmid, P. Waldron, B. A. Syrett, and S. Janz, “Correlation of Scattering Loss, Sidewall Roughness and Waveguide Width in Silicon-on-Insulator (SOI) Ridge waveguides,” J. Lightwave Technol. 27(18), 3999–4008 (2009).
    [CrossRef]
  21. H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
    [CrossRef]

2009 (3)

2008 (1)

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
[CrossRef]

2007 (3)

K.-J. Byeon, S.-Y. Hwang, and H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography,” Appl. Phys. Lett. 91(9), 091106 (2007).
[CrossRef]

J. T. Kim, J. J. Ju, S. Park, and M.-H. Lee, “O/E Integration of Polymer Waveguide Devices by Using Replication Technology,” IEEE J. Sel. Top. Quantum Electron. 13(2), 177–184 (2007).
[CrossRef]

H. Lan, Y. Ding, H. Liu, and B. Lu, “Review of the wafer stage for nanoimprint lithography,” Microelectron. Eng. 84(4), 684–688 (2007).
[CrossRef]

2006 (1)

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer Microring Resonators for Biochemical Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

2005 (1)

2004 (2)

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhöfer, “Replicated Optical MEMS in Sol-Gel Materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
[CrossRef]

2002 (2)

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

1995 (1)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Ahrens, G.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Albero, J.

Beck, M.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Byeon, K.-J.

K.-J. Byeon, S.-Y. Hwang, and H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography,” Appl. Phys. Lett. 91(9), 091106 (2007).
[CrossRef]

Chao, C.-Y.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer Microring Resonators for Biochemical Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

Chen, Y.

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
[CrossRef]

Chou, S. Y.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Dalton, L. R.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Delage, A. É.

Ding, Y.

H. Lan, Y. Ding, H. Liu, and B. Lu, “Review of the wafer stage for nanoimprint lithography,” Microelectron. Eng. 84(4), 684–688 (2007).
[CrossRef]

Dumitrescu, M.

J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009).
[CrossRef]

Fink, M.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Fung, W.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer Microring Resonators for Biochemical Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

Gale, M. T.

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhöfer, “Replicated Optical MEMS in Sol-Gel Materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

Gimkiewicz, C.

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhöfer, “Replicated Optical MEMS in Sol-Gel Materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

Gomez, V.

Gorecki, C.

Graczyk, M.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Gruetzner, G.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Guo, L. J.

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer Microring Resonators for Biochemical Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
[CrossRef]

Hwang, S.-Y.

K.-J. Byeon, S.-Y. Hwang, and H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography,” Appl. Phys. Lett. 91(9), 091106 (2007).
[CrossRef]

Janz, S.

Jen, A. K.-Y.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Ju, J. J.

J. T. Kim, J. J. Ju, S. Park, and M.-H. Lee, “O/E Integration of Polymer Waveguide Devices by Using Replication Technology,” IEEE J. Sel. Top. Quantum Electron. 13(2), 177–184 (2007).
[CrossRef]

Kim, J. T.

J. T. Kim, J. J. Ju, S. Park, and M.-H. Lee, “O/E Integration of Polymer Waveguide Devices by Using Replication Technology,” IEEE J. Sel. Top. Quantum Electron. 13(2), 177–184 (2007).
[CrossRef]

Kimerling, L. C.

Krauss, P. R.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Lamontagne, B.

Lan, H.

H. Lan, Y. Ding, H. Liu, and B. Lu, “Review of the wafer stage for nanoimprint lithography,” Microelectron. Eng. 84(4), 684–688 (2007).
[CrossRef]

Lapointe, J.

Lee, H.

K.-J. Byeon, S.-Y. Hwang, and H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography,” Appl. Phys. Lett. 91(9), 091106 (2007).
[CrossRef]

Lee, M.-H.

J. T. Kim, J. J. Ju, S. Park, and M.-H. Lee, “O/E Integration of Polymer Waveguide Devices by Using Replication Technology,” IEEE J. Sel. Top. Quantum Electron. 13(2), 177–184 (2007).
[CrossRef]

Leinonen, T.

J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009).
[CrossRef]

Liu, H.

H. Lan, Y. Ding, H. Liu, and B. Lu, “Review of the wafer stage for nanoimprint lithography,” Microelectron. Eng. 84(4), 684–688 (2007).
[CrossRef]

Liu, R.

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
[CrossRef]

Lu, B.

H. Lan, Y. Ding, H. Liu, and B. Lu, “Review of the wafer stage for nanoimprint lithography,” Microelectron. Eng. 84(4), 684–688 (2007).
[CrossRef]

Lu, B.-R.

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
[CrossRef]

Ma, H.

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Maximov, I.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Montelius, L.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Niemi, T.

J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009).
[CrossRef]

Nieradko, L.

Obi, S.

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhöfer, “Replicated Optical MEMS in Sol-Gel Materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

Ottevaere, H.

Päivänranta, B.

Park, S.

J. T. Kim, J. J. Ju, S. Park, and M.-H. Lee, “O/E Integration of Polymer Waveguide Devices by Using Replication Technology,” IEEE J. Sel. Top. Quantum Electron. 13(2), 177–184 (2007).
[CrossRef]

Passilly, N.

Pessa, M.

J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009).
[CrossRef]

Pfeiffer, K.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Pietarinen, J.

Qu, X.-P.

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
[CrossRef]

Renstrom, P. J.

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

Reuther, F.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Scheer, H.-C.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Schmid, J. H.

Schulz, H.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Seekamp, J.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Sotomayor Torres, C. M.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Sparacin, D. K.

Spector, S. J.

Steingrueber, F.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Sun, Y.

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
[CrossRef]

Syrett, B. A.

Thienpont, H.

Toikkanen, L.

J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009).
[CrossRef]

Tommila, J.

J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009).
[CrossRef]

Viheriälä, J.

J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009).
[CrossRef]

Waldron, P.

Wan, J.

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
[CrossRef]

Westenhöfer, S.

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhöfer, “Replicated Optical MEMS in Sol-Gel Materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

Xie, S.-Q.

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
[CrossRef]

Yap, K. P.

Zankovych, S.

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

Adv. Mater. (1)

H. Ma, A. K.-Y. Jen, and L. R. Dalton, “Polymer-Based Optical Waveguides: Materials, Processing and Devices,” Adv. Mater. 14(19), 1339–1365 (2002).
[CrossRef]

Appl. Phys. Lett. (2)

S. Y. Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67(21), 3114–3116 (1995).
[CrossRef]

K.-J. Byeon, S.-Y. Hwang, and H. Lee, “Fabrication of two-dimensional photonic crystal patterns on GaN-based light-emitting diodes using thermally curable monomer-based nanoimprint lithography,” Appl. Phys. Lett. 91(9), 091106 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

J. T. Kim, J. J. Ju, S. Park, and M.-H. Lee, “O/E Integration of Polymer Waveguide Devices by Using Replication Technology,” IEEE J. Sel. Top. Quantum Electron. 13(2), 177–184 (2007).
[CrossRef]

C.-Y. Chao, W. Fung, and L. J. Guo, “Polymer Microring Resonators for Biochemical Sensing Applications,” IEEE J. Sel. Top. Quantum Electron. 12(1), 134–142 (2006).
[CrossRef]

S. Obi, M. T. Gale, C. Gimkiewicz, and S. Westenhöfer, “Replicated Optical MEMS in Sol-Gel Materials,” IEEE J. Sel. Top. Quantum Electron. 10(3), 440–444 (2004).
[CrossRef]

J. Lightwave Technol. (2)

J. Phys. D Appl. Phys. (1)

L. J. Guo, “Recent progress in nanoimprint technology and its applications,” J. Phys. D Appl. Phys. 37(11), R123–R141 (2004).
[CrossRef]

Microelectron. Eng. (4)

H. Lan, Y. Ding, H. Liu, and B. Lu, “Review of the wafer stage for nanoimprint lithography,” Microelectron. Eng. 84(4), 684–688 (2007).
[CrossRef]

K. Pfeiffer, M. Fink, G. Ahrens, G. Gruetzner, F. Reuther, J. Seekamp, S. Zankovych, C. M. Sotomayor Torres, I. Maximov, M. Beck, M. Graczyk, L. Montelius, H. Schulz, H.-C. Scheer, and F. Steingrueber, “Polymer stamps for nanoimprinting,” Microelectron. Eng. 61–62(1-4), 393–398 (2002).
[CrossRef]

S.-Q. Xie, J. Wan, B.-R. Lu, Y. Sun, Y. Chen, X.-P. Qu, and R. Liu, “A nanoimprint lithography for fabricating SU-8 gratings for near-infrared to deep-UV application,” Microelectron. Eng. 85(5-6), 914–917 (2008).
[CrossRef]

J. Viheriälä, J. Tommila, T. Leinonen, M. Dumitrescu, L. Toikkanen, T. Niemi, and M. Pessa, “Applications of UV-nanoimprint soft stamps in fabrication of single-frequency diode lasers,” Microelectron. Eng. 86(3), 321–324 (2009).
[CrossRef]

Opt. Express (1)

Other (7)

T. Han, S. Madden, M. Zhang, R. Charters, and B. Luther-Davies, “Low Cost Nanoimprinted Polymer Waveguides,” in IEEE Conference Proceedings on Optoelectronic and Microelectronic Materials and Devices (2008), pp. 185–188.

W.-J. Lee, J. W. Lim,S. H. Hwang, and B. S. Rho, “Imprint Master Fabricated by Ultra Precision Machining for Optical Waveguide,” in IEEE Proceedings of Opto-Electronics and Communications Conference and the Australian Conference on Optical (2008), pp. 1–2

H. J. Levinson, Principles of Lithography (SPIE Press, 2005), Chap. 2.

Datasheet for Ormoclad, Microresist Technology, http://www.microresist.de/products/ormocers/pdf/pi_ormocore_clad_en_07062201_ls_neu.pdf

FIMMWAVE software by Photon Design.

G. Keiser, Optical fiber communications (McGraw Hill Companies, 2000)

G. T. Reed, and A. P. Knights, Silicon photonics (Wiley, 2004)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Process flow used to fabricate waveguides.

Fig. 2
Fig. 2

(a) Imprinting mould consisting of patterned positive tone resist on a silicon wafer and (b) cross section image from a replicated ridge waveguide based on UV-curable hybrid polymer on a glass substrate.

Fig. 3
Fig. 3

Measurement setup used to characterize the imprinted waveguides.

Fig. 4
Fig. 4

Intensity profiles measured at the output facets of imprinted waveguides with different widths. (a) Output intensity distribution of a waveguide with a width of 2 µm. (b) Intensity distribution of a waveguide with a width of 6 µm, when light is coupled into a waveguide at the center point of the facet. (c) Intensity distribution of a waveguide with a width of 6 µm, when light is coupled into a waveguide near the edge of the ridge. Inserts in (b) and (c) illustrate the input coupling spots exciting different modes.

Fig. 5
Fig. 5

Theoretical intensity distributions at 1530 nm wavelength: (a) Gaussian distribution of E 2 fiber describing the intensity profile emitted by the tapered fiber. (b) Simulated TE-mode profile E 2 wg of the waveguide. (c) Γ2 overlap term calculated from E fiber and E wg describing the coupling efficiency between waveguide and fiber.

Fig. 6
Fig. 6

Simulated and measured curves of fiber-to-fiber coupling efficiency at (a) 1530 nm wavelength and (b) 1310 nm wavelength.

Fig. 7
Fig. 7

Simulated and measured curves of waveguide-to-fiber coupling efficiency at 1530 nm wavelength along (a) lateral and (b) vertical directions.

Fig. 8
Fig. 8

Simulated and measured curves of waveguide-to-fiber coupling efficiency at 1310 nm wavelength along (a) lateral and (b) vertical directions.

Tables (2)

Tables Icon

Table 1 Measured transmissions of single-mode waveguides with a width of 2 µm and a length of 3 cm. Underlined values represent the highest measured transmission values.

Tables Icon

Table 2 Computationally obtained values influencing on the transmittance of a waveguide with a width of 2µm and total transmission according to Eq. (1).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = Γ 2 ( 1 R ) P ( 1 R ) Γ 2 .
P = 10 ( α d / 10 ) ,
R = | n w g n a i r n w g + n a i r | 2 ,
Γ 2 ( x ' , y ' ) = ( E f i b e r ( x x ' , y y ' ) E w g ( x , y ) d x d y ) 2 E f i b e r 2 ( x x ' , y y ' ) d x d y E w g 2 ( x , y ) d x d y .

Metrics