Abstract

A novel reconfigurable optical interconnect architecture for on-board high-speed data transmission is proposed and experimentally demonstrated. The interconnect architecture is based on the use of an Opto-VLSI processor in conjunction with a 4-f imaging system to achieve reconfigurable chip-to-chip or board-to-board data communications. By reconfiguring the phase hologram of an Opto-VLSI processor, optical data generated by a vertical Cavity Surface Emitting Laser (VCSEL) associated to a chip (or a board) is arbitrarily steered to the photodetector associated to another chip (or another board). Experimental results show that the optical interconnect losses range from 5.8dB to 9.6dB, and that the maximum crosstalk level is below −36dB. The proposed architecture is tested for high-speed data transmission, and measured eye diagrams display good eye opening for data rate of up to 10Gb/s.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Lytel, H. L. Davidson, N. Nettleton, and T. Sze, “Optical interconnections within modern high-performance computing systems,” Proc. IEEE 88(6), 758–763 (2000).
    [CrossRef]
  2. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
    [CrossRef]
  3. E. E. E. Frietman, R. J. Ernst, R. Crosbie, and M. Shimoji, “Prospects for optical interconnects in distributed shared-memory organized MIMD architectures,” J. Supercomput. 14(2), 107–128 (1999).
    [CrossRef]
  4. A. V. Krishnamoorthy, X. Zheng, J. E. Cunningham, J. Lexau, R. Ho, and O. Torudbakken, “Optical interconnects for present and future high-performance computing systems,” Proceedings of 16th IEEE Symposium on High Performance Interconnects, 175–177 (2008).
  5. D. A. B. Miller, “Physical reasons for optical interconnection,” (Special Issue on Smart Pixels) J. Optoelectron. 11, 155 (1997).
  6. J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” Proceedings of the 16th IEEE Symposium on High Performance Interconnects, 190–194 (2008).
  7. T. D. Wilkinson, C. Henderson, D. Gilleyva, B. Robertson, D. O’Brien, and G. Faulkner, “Adaptive optical interconnect using an FLC SLM,” Ferroelectrics 312, 81–85 (2004).
    [CrossRef]
  8. C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor-to-DRAM networks with monolithic silicon photonics,” Proceedings of 16th IEEE Symposium on High Performance Interconnects, 21–30 (2008).
  9. O. Liboiron-Ladouceur, H. Wang, A. S. Garg, and K. Bergman, “Low-power, transparent optical network interface for high bandwidth off-chip interconnects,” Opt. Express 17(8), 6550–6561 (2009).
    [CrossRef] [PubMed]
  10. A. K. Kodi and A. Louri, “Multidimensional and reconfigurable optical interconnects for high-performance computing (HPC) systems,” J. Lightwave Technol. 27(21), 4634–4641 (2009).
    [CrossRef]
  11. R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
    [CrossRef]
  12. F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
    [CrossRef]
  13. B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Madhavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-the-Processor with parallel multiwavelength optical interconnects,” J. Lightwave Technol. 22(9), 2043–2054 (2004).
    [CrossRef]
  14. L. A. Buckman Windover, J. N. Simon, S. A. Rosenau, K. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C. K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, and D. W. Dolfi, “Parallel optical interconnects beyond > 100 Gb/s,” J. Lightwave Technol. 22(9), 2055–2063 (2004).
    [CrossRef]
  15. Y. Li, J. Ai, and J. Popelek, “Board-level 2-D data-capable optical interconnect circuits using polymer fiber-image guides,” Proc. IEEE 88(6), 794–805 (2000).
    [CrossRef]
  16. T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, and J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface-emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39(5), 683–689 (2000).
    [CrossRef] [PubMed]
  17. C. J. Henderson, D. G. Leyva, and T. D. Wilkinson, “Free space adaptive optical interconnect at 1.25 Gb/s with beam steering using a ferroelectric liquid-crystal SLM,” J. Lightwave Technol. 24(5), 1989–1997 (2006).
    [CrossRef]
  18. S. Agelis, and M. Jonsson, “Reconfigurable optical interconnection system supporting concurrent application-specific parallel computing,” Proceedings of the 17th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’05), 2005.
  19. F. Wippermann, D. Radtke, M. Amberg, and S. Sinzinger, “Integrated free-space optical interconnect fabricated in planar optics using chirped microlens arrays,” Opt. Express 14(22), 10765–10778 (2006).
    [CrossRef] [PubMed]
  20. D. V. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: Challenges and solutions,” Proc. IEEE 88(6), 806–818 (2000).
    [CrossRef]
  21. J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
    [CrossRef]
  22. N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88(6), 829–837 (2000).
    [CrossRef]
  23. M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express 14(15), 6823–6836 (2006).
    [CrossRef] [PubMed]
  24. J. Stockley, and S. Serati, “Advances in liquid crystal beam steering,” Boulder Nonlinear Systems, www.bnonliner.com, (2004).
  25. K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
    [CrossRef]
  26. J. W. Goodman and A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Develop. 14(9), 478–484 (1970).
    [CrossRef]

2009 (2)

2006 (3)

2004 (3)

2003 (1)

J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
[CrossRef]

2001 (1)

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

2000 (7)

Y. Li, J. Ai, and J. Popelek, “Board-level 2-D data-capable optical interconnect circuits using polymer fiber-image guides,” Proc. IEEE 88(6), 794–805 (2000).
[CrossRef]

D. V. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: Challenges and solutions,” Proc. IEEE 88(6), 806–818 (2000).
[CrossRef]

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

R. Lytel, H. L. Davidson, N. Nettleton, and T. Sze, “Optical interconnections within modern high-performance computing systems,” Proc. IEEE 88(6), 758–763 (2000).
[CrossRef]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88(6), 829–837 (2000).
[CrossRef]

T. Maj, A. G. Kirk, D. V. Plant, J. F. Ahadian, C. G. Fonstad, K. L. Lear, K. Tatah, M. S. Robinson, and J. A. Trezza, “Interconnection of a two-dimensional array of vertical-cavity surface-emitting lasers to a receiver array by means of a fiber image guide,” Appl. Opt. 39(5), 683–689 (2000).
[CrossRef] [PubMed]

1999 (1)

E. E. E. Frietman, R. J. Ernst, R. Crosbie, and M. Shimoji, “Prospects for optical interconnects in distributed shared-memory organized MIMD architectures,” J. Supercomput. 14(2), 107–128 (1999).
[CrossRef]

1997 (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” (Special Issue on Smart Pixels) J. Optoelectron. 11, 155 (1997).

1993 (1)

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[CrossRef]

1970 (1)

J. W. Goodman and A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Develop. 14(9), 478–484 (1970).
[CrossRef]

Ahadian, J. F.

Ai, J.

Y. Li, J. Ai, and J. Popelek, “Board-level 2-D data-capable optical interconnect circuits using polymer fiber-image guides,” Proc. IEEE 88(6), 794–805 (2000).
[CrossRef]

Alameh, K. E.

Ali, M. E.

Aljada, M.

Amberg, M.

Andreou, A.

J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
[CrossRef]

Apsel, A.

J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
[CrossRef]

Bergman, K.

Bihari, B.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Bristow, J.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Buckman Windover, L. A.

Chang, W.

J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
[CrossRef]

Chen, R. T.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Choi, C.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Chung, I. S.

Crosbie, R.

E. E. E. Frietman, R. J. Ernst, R. Crosbie, and M. Shimoji, “Prospects for optical interconnects in distributed shared-memory organized MIMD architectures,” J. Supercomput. 14(2), 107–128 (1999).
[CrossRef]

Davidson, H. L.

R. Lytel, H. L. Davidson, N. Nettleton, and T. Sze, “Optical interconnections within modern high-performance computing systems,” Proc. IEEE 88(6), 758–763 (2000).
[CrossRef]

Dolfi, D. W.

Ebeling, K. J.

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

Ernst, R. J.

E. E. E. Frietman, R. J. Ernst, R. Crosbie, and M. Shimoji, “Prospects for optical interconnects in distributed shared-memory organized MIMD architectures,” J. Supercomput. 14(2), 107–128 (1999).
[CrossRef]

Faulkner, G.

T. D. Wilkinson, C. Henderson, D. Gilleyva, B. Robertson, D. O’Brien, and G. Faulkner, “Adaptive optical interconnect using an FLC SLM,” Ferroelectrics 312, 81–85 (2004).
[CrossRef]

Flower, G. M.

Fonstad, C. G.

Frietman, E. E. E.

E. E. E. Frietman, R. J. Ernst, R. Crosbie, and M. Shimoji, “Prospects for optical interconnects in distributed shared-memory organized MIMD architectures,” J. Supercomput. 14(2), 107–128 (1999).
[CrossRef]

Garg, A. S.

Giboney, K.

Gilleyva, D.

T. D. Wilkinson, C. Henderson, D. Gilleyva, B. Robertson, D. O’Brien, and G. Faulkner, “Adaptive optical interconnect using an FLC SLM,” Ferroelectrics 312, 81–85 (2004).
[CrossRef]

Goodman, J. W.

J. W. Goodman and A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Develop. 14(9), 478–484 (1970).
[CrossRef]

Griese, E.

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

Grot, A.

Gruhlke, R. W.

Henderson, C.

T. D. Wilkinson, C. Henderson, D. Gilleyva, B. Robertson, D. O’Brien, and G. Faulkner, “Adaptive optical interconnect using an FLC SLM,” Ferroelectrics 312, 81–85 (2004).
[CrossRef]

Henderson, C. J.

Hibbsbrenner, M. K.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Ishikawa, M.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88(6), 829–837 (2000).
[CrossRef]

Jager, R.

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

Johnson, K. M.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[CrossRef]

Kalayjian, Z.

J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
[CrossRef]

Kirk, A. G.

Kobayashi, Y.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88(6), 829–837 (2000).
[CrossRef]

Kodi, A. K.

Law, B.

Lear, K. L.

Lee, Y. T.

Lehmacher, S.

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

Lemoff, B. E.

Levi, A. F. J.

Leyva, D. G.

Li, Y.

Y. Li, J. Ai, and J. Popelek, “Board-level 2-D data-capable optical interconnect circuits using polymer fiber-image guides,” Proc. IEEE 88(6), 794–805 (2000).
[CrossRef]

Liboiron-Ladouceur, O.

Lin, C. K.

Lin, L.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Liu, J. J.

J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
[CrossRef]

Liu, Y. J.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Liu, Y. S.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Louri, A.

Lytel, R.

R. Lytel, H. L. Davidson, N. Nettleton, and T. Sze, “Optical interconnections within modern high-performance computing systems,” Proc. IEEE 88(6), 758–763 (2000).
[CrossRef]

Madhavan, B.

Maj, T.

McArdle, N.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88(6), 829–837 (2000).
[CrossRef]

McKnight, D. J.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[CrossRef]

Mederer, F.

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

Michalzik, R.

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

D. A. B. Miller, “Physical reasons for optical interconnection,” (Special Issue on Smart Pixels) J. Optoelectron. 11, 155 (1997).

Mirkarimi, L. W.

Naruse, M.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88(6), 829–837 (2000).
[CrossRef]

Nettleton, N.

R. Lytel, H. L. Davidson, N. Nettleton, and T. Sze, “Optical interconnections within modern high-performance computing systems,” Proc. IEEE 88(6), 758–763 (2000).
[CrossRef]

Neyer, A.

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

O’Brien, D.

T. D. Wilkinson, C. Henderson, D. Gilleyva, B. Robertson, D. O’Brien, and G. Faulkner, “Adaptive optical interconnect using an FLC SLM,” Ferroelectrics 312, 81–85 (2004).
[CrossRef]

Panotopoulos, G.

Picor, B.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Plant, D. V.

Popelek, J.

Y. Li, J. Ai, and J. Popelek, “Board-level 2-D data-capable optical interconnect circuits using polymer fiber-image guides,” Proc. IEEE 88(6), 794–805 (2000).
[CrossRef]

Radtke, D.

Rankin, G.

Riely, B.

J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
[CrossRef]

Robertson, B.

T. D. Wilkinson, C. Henderson, D. Gilleyva, B. Robertson, D. O’Brien, and G. Faulkner, “Adaptive optical interconnect using an FLC SLM,” Ferroelectrics 312, 81–85 (2004).
[CrossRef]

Robinson, M. S.

Rosenau, S. A.

Shimoji, M.

E. E. E. Frietman, R. J. Ernst, R. Crosbie, and M. Shimoji, “Prospects for optical interconnects in distributed shared-memory organized MIMD architectures,” J. Supercomput. 14(2), 107–128 (1999).
[CrossRef]

Silvestri, A. M.

J. W. Goodman and A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Develop. 14(9), 478–484 (1970).
[CrossRef]

Simon, J. N.

Simonis, G. J.

J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
[CrossRef]

Sinzinger, S.

Sze, T.

R. Lytel, H. L. Davidson, N. Nettleton, and T. Sze, “Optical interconnections within modern high-performance computing systems,” Proc. IEEE 88(6), 758–763 (2000).
[CrossRef]

Tandon, A.

Tang, S.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Tatah, K.

Toyoda, H.

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88(6), 829–837 (2000).
[CrossRef]

Trezza, J. A.

Underwood, I.

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[CrossRef]

Unold, H. J.

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

Wang, H.

Wickman, R.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Wilkinson, T. D.

C. J. Henderson, D. G. Leyva, and T. D. Wilkinson, “Free space adaptive optical interconnect at 1.25 Gb/s with beam steering using a ferroelectric liquid-crystal SLM,” J. Lightwave Technol. 24(5), 1989–1997 (2006).
[CrossRef]

T. D. Wilkinson, C. Henderson, D. Gilleyva, B. Robertson, D. O’Brien, and G. Faulkner, “Adaptive optical interconnect using an FLC SLM,” Ferroelectrics 312, 81–85 (2004).
[CrossRef]

Wippermann, F.

Wu, L.

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

Xia, H.

Appl. Opt. (1)

Ferroelectrics (1)

T. D. Wilkinson, C. Henderson, D. Gilleyva, B. Robertson, D. O’Brien, and G. Faulkner, “Adaptive optical interconnect using an FLC SLM,” Ferroelectrics 312, 81–85 (2004).
[CrossRef]

IBM J. Res. Develop. (1)

J. W. Goodman and A. M. Silvestri, “Some effects of Fourier-domain phase quantization,” IBM J. Res. Develop. 14(9), 478–484 (1970).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. M. Johnson, D. J. McKnight, and I. Underwood, “Smart spatial light modulators using liquid crystals on silicon,” IEEE J. Quantum Electron. 29(2), 699–714 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

J. J. Liu, Z. Kalayjian, B. Riely, W. Chang, G. J. Simonis, A. Apsel, and A. Andreou, “Multichannel ultrathin silicon-on-sapphire optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 9(2), 380–386 (2003).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Mederer, R. Jager, H. J. Unold, R. Michalzik, K. J. Ebeling, S. Lehmacher, A. Neyer, and E. Griese, “3- Gb/s data transmission with GaAs VCSEL’s over PCB integrated polymer waveguides,” IEEE Photon. Technol. Lett. 13(9), 1032–1034 (2001).
[CrossRef]

J. Lightwave Technol. (4)

J. Optoelectron. (1)

D. A. B. Miller, “Physical reasons for optical interconnection,” (Special Issue on Smart Pixels) J. Optoelectron. 11, 155 (1997).

J. Supercomput. (1)

E. E. E. Frietman, R. J. Ernst, R. Crosbie, and M. Shimoji, “Prospects for optical interconnects in distributed shared-memory organized MIMD architectures,” J. Supercomput. 14(2), 107–128 (1999).
[CrossRef]

Opt. Express (3)

Proc. IEEE (6)

R. Lytel, H. L. Davidson, N. Nettleton, and T. Sze, “Optical interconnections within modern high-performance computing systems,” Proc. IEEE 88(6), 758–763 (2000).
[CrossRef]

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88(6), 728–749 (2000).
[CrossRef]

Y. Li, J. Ai, and J. Popelek, “Board-level 2-D data-capable optical interconnect circuits using polymer fiber-image guides,” Proc. IEEE 88(6), 794–805 (2000).
[CrossRef]

R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R. Wickman, B. Picor, M. K. Hibbsbrenner, J. Bristow, and Y. S. Liu, “Fully embedded board-level guided-wave optoelectronic interconnects,” Proc. IEEE 88(6), 780–793 (2000).
[CrossRef]

D. V. Plant and A. G. Kirk, “Optical interconnects at the chip and board level: Challenges and solutions,” Proc. IEEE 88(6), 806–818 (2000).
[CrossRef]

N. McArdle, M. Naruse, H. Toyoda, Y. Kobayashi, and M. Ishikawa, “Reconfigurable optical interconnections for parallel computing,” Proc. IEEE 88(6), 829–837 (2000).
[CrossRef]

Other (5)

J. Stockley, and S. Serati, “Advances in liquid crystal beam steering,” Boulder Nonlinear Systems, www.bnonliner.com, (2004).

S. Agelis, and M. Jonsson, “Reconfigurable optical interconnection system supporting concurrent application-specific parallel computing,” Proceedings of the 17th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD’05), 2005.

A. V. Krishnamoorthy, X. Zheng, J. E. Cunningham, J. Lexau, R. Ho, and O. Torudbakken, “Optical interconnects for present and future high-performance computing systems,” Proceedings of 16th IEEE Symposium on High Performance Interconnects, 175–177 (2008).

J. A. Kash, “Leveraging optical interconnects in future supercomputers and servers,” Proceedings of the 16th IEEE Symposium on High Performance Interconnects, 190–194 (2008).

C. Batten, A. Joshi, J. Orcutt, A. Khilo, B. Moss, C. Holzwarth, M. Popovic, H. Li, H. Smith, J. Hoyt, F. Kartner, R. Ram, V. Stojanovic, and K. Asanovic, “Building manycore processor-to-DRAM networks with monolithic silicon photonics,” Proceedings of 16th IEEE Symposium on High Performance Interconnects, 21–30 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Gray level versus pixel number of different blazed gratings; (b) Corresponding computer-generated steering phase holograms; (c) Principle of beam steering using an Opto-VLSI processor. The steering angle is inversely proportional to the blazed grating period.

Fig. 2
Fig. 2

Illustration of chip-to-chip reconfigurable optical interconnects employing 1x3 optical switches.

Fig. 3
Fig. 3

Illustration of an array of 1x3 optical switches implemented using a single Opto-VLSI processor and a 4-f imaging system.

Fig. 4
Fig. 4

Illustration of the principle of switching operations. (a) Without a hologram, the collimated optical beam reflects back and focuses on a spot between the two fibers; (b) With hologram H23 on, a +1st order diffracted beam is focused on and coupled into the fiber 3; (c) With hologram H21 on, a −1st order diffracted beam is focused on and coupled into the fiber 1, (d) With hologram H24 on, a +1st order diffracted beam is focused on and coupled into the fiber 4.

Fig. 5
Fig. 5

Experimental system for measuring the optical intensities at the three output ports of the optical interconnect system. Optical signal from a laser source is input through fiber 2 and the three fibers are used for output ports for receiving the steered beams by the Opto-VLSI processor. Two optical spectrum analyzers OSA1 and OSA2 are used to measure optical intensities for both signal and crosstalk.

Fig. 6
Fig. 6

Measured optical spectra from fiber 3 and fiber 4 and the crosstalk intensities detected by the OSA1 and OSA2.

Fig. 7
Fig. 7

Experimental setup for measuring the eye diagram of the optical interconnect architecture. Opto-VLSI processor switches modulated optical signal from Fiber 2 to Fiber 4. Insertion loss due to optical switching is around 9.6 dB (worst-case scenario).

Fig. 8
Fig. 8

Measured eye diagrams for transmitted data rate of 2Gb/s, 5Gb/s, 10Gb/s and 12Gb/s through the reconfigurable optical interconnect system.

Tables (1)

Tables Icon

Table 1 The intensities of signals and crosstalk levels from the five fiber ports measured by OSA1 and OSA2 (Fig. 5).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

θ x / y = λ p x / y = λ ( s x / y ) ( N x / y )
ϕ n = n 2 π M , n = 1 , ... , M
η ( M ) = [ sin ( π / M ) ( π / M ) ] 2

Metrics