Abstract

We theoretically investigate a scheme to obtain sub-diffraction-limited resolution in coherent anti-Stokes Raman scattering (CARS) microscopy. We find using density matrix calculations that the rise of vibrational (Raman) coherence can be strongly suppressed, and thereby the emission of CARS signals can be significantly reduced, when pre-populating the corresponding vibrational state through an incoherent process. The effectiveness of pre-populating the vibrational state of interest is investigated by considering the excitation of a neighbouring vibrational (control) state through an intense, mid-infrared control laser. We observe that, similar to the processes employed in stimulated emission depletion microscopy, the CARS signal exhibits saturation behaviour if the transition rate between the vibrational and the control state is large. Our approach opens up the possibility of achieving chemically selectivity sub-diffraction-limited spatially resolved imaging.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994).
    [CrossRef]
  2. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
    [CrossRef] [PubMed]
  3. T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
    [CrossRef] [PubMed]
  4. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  5. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
    [CrossRef] [PubMed]
  6. B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
    [CrossRef] [PubMed]
  7. R. Zenobi, “Analytical tools for the nano world,” Anal. Bioanal. Chem. 390(1), 215–221 (2008).
    [CrossRef] [PubMed]
  8. E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
    [CrossRef]
  9. M. Dyba and S. W. Hell, “Focal Spots of Size λ/23 Open Up Far-Field Fluorescence Microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
    [CrossRef] [PubMed]
  10. H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
    [CrossRef] [PubMed]
  11. H. H. Szeto, P. W. Schiller, K. Zhao, and G. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” The FASEB Journal, 04–1982fje (2004).
  12. C. J. Daly and J. C. McGrath, “Fluorescent ligands, antibodies, and proteins for the study of receptors,” Pharmacol. Ther. 100(2), 101–118 (2003).
    [CrossRef] [PubMed]
  13. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
    [CrossRef] [PubMed]
  14. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  15. C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
    [CrossRef] [PubMed]
  16. C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
    [CrossRef] [PubMed]
  17. A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Physical Review A (Atomic, Molecular, and Optical Physics) 79(1), 013823–013827 (2009).
    [CrossRef]
  18. P. W. Milonni, and J. H. Eberly, Lasers (John Wiley & Sons, New York, 1988).
  19. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, New York, 1984).
  20. H. Okamoto and K. Yoshihara, “Femtosecond time-resolved coherent Raman scattering from β-carotene in solution. Ultrahigh frequency (11 THz) beating phenomenon and sub-picosecond vibrational relaxation,” Chem. Phys. Lett. 177(6), 568–572 (1991).
    [CrossRef]
  21. R. de Vivie-Riedle and U. Troppmann, “Femtosecond Lasers for Quantum Information Technology,” Chem. Rev. 107(11), 5082–5100 (2007).
    [CrossRef] [PubMed]
  22. J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
    [CrossRef] [PubMed]
  23. A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, “Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion,” Chem. Phys. Lett. 299(3-4), 296–302 (1999).
    [CrossRef]
  24. S. L. McCall and E. L. Hahn, “Self-Induced Transparency by Pulsed Coherent Light,” Phys. Rev. Lett. 18(21), 908–911 (1967).
    [CrossRef]
  25. B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
    [CrossRef] [PubMed]
  26. C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004).
    [CrossRef] [PubMed]

2009 (2)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Physical Review A (Atomic, Molecular, and Optical Physics) 79(1), 013823–013827 (2009).
[CrossRef]

2008 (4)

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[CrossRef] [PubMed]

R. Zenobi, “Analytical tools for the nano world,” Anal. Bioanal. Chem. 390(1), 215–221 (2008).
[CrossRef] [PubMed]

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

2007 (1)

R. de Vivie-Riedle and U. Troppmann, “Femtosecond Lasers for Quantum Information Technology,” Chem. Rev. 107(11), 5082–5100 (2007).
[CrossRef] [PubMed]

2006 (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

2005 (2)

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

2004 (1)

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004).
[CrossRef] [PubMed]

2003 (2)

J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
[CrossRef] [PubMed]

C. J. Daly and J. C. McGrath, “Fluorescent ligands, antibodies, and proteins for the study of receptors,” Pharmacol. Ther. 100(2), 101–118 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Dyba and S. W. Hell, “Focal Spots of Size λ/23 Open Up Far-Field Fluorescence Microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[CrossRef] [PubMed]

2000 (1)

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

1999 (2)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, “Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion,” Chem. Phys. Lett. 299(3-4), 296–302 (1999).
[CrossRef]

1994 (2)

1991 (1)

H. Okamoto and K. Yoshihara, “Femtosecond time-resolved coherent Raman scattering from β-carotene in solution. Ultrahigh frequency (11 THz) beating phenomenon and sub-picosecond vibrational relaxation,” Chem. Phys. Lett. 177(6), 568–572 (1991).
[CrossRef]

1982 (1)

1967 (1)

S. L. McCall and E. L. Hahn, “Self-Induced Transparency by Pulsed Coherent Light,” Phys. Rev. Lett. 18(21), 908–911 (1967).
[CrossRef]

Alexandrou, A.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004).
[CrossRef] [PubMed]

Asbury, J. B.

J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
[CrossRef] [PubMed]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Brandenburg, B.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[CrossRef] [PubMed]

Côté, D.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Daly, C. J.

C. J. Daly and J. C. McGrath, “Fluorescent ligands, antibodies, and proteins for the study of receptors,” Pharmacol. Ther. 100(2), 101–118 (2003).
[CrossRef] [PubMed]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

de Vivie-Riedle, R.

R. de Vivie-Riedle and U. Troppmann, “Femtosecond Lasers for Quantum Information Technology,” Chem. Rev. 107(11), 5082–5100 (2007).
[CrossRef] [PubMed]

Duncan, M. D.

Dyba, M.

M. Dyba and S. W. Hell, “Focal Spots of Size λ/23 Open Up Far-Field Fluorescence Microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Eggeling, C.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Egner, A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Evans, C. L.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Fayer, M. D.

J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
[CrossRef] [PubMed]

Fraser, J. M.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004).
[CrossRef] [PubMed]

Freudiger, C. W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Gaffney, K. J.

J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
[CrossRef] [PubMed]

Goun, A.

J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
[CrossRef] [PubMed]

Hahn, E. L.

S. L. McCall and E. L. Hahn, “Self-Induced Transparency by Pulsed Coherent Light,” Phys. Rev. Lett. 18(21), 908–911 (1967).
[CrossRef]

Han, K. Y.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

He, C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Hein, B.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

Heinzelmann, H.

H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994).
[CrossRef]

Hell, S. W.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

M. Dyba and S. W. Hell, “Focal Spots of Size λ/23 Open Up Far-Field Fluorescence Microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Holtom, G. R.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Huang, B.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[CrossRef] [PubMed]

Ikagawa, H.

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

Irvine, S. E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Isogai, Z.

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

Iwaki, M.

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

Jakobs, S.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Joffre, M.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004).
[CrossRef] [PubMed]

Jones, S. A.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[CrossRef] [PubMed]

Kamiya, T.

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

Kang, J. X.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Klar, T. A.

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

Krishnamachari, V. V.

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Physical Review A (Atomic, Molecular, and Optical Physics) 79(1), 013823–013827 (2009).
[CrossRef]

Lin, C. P.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lu, S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Manuccia, T. J.

Martin, J.-L.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004).
[CrossRef] [PubMed]

McCall, S. L.

S. L. McCall and E. L. Hahn, “Self-Induced Transparency by Pulsed Coherent Light,” Phys. Rev. Lett. 18(21), 908–911 (1967).
[CrossRef]

McGrath, J. C.

C. J. Daly and J. C. McGrath, “Fluorescent ligands, antibodies, and proteins for the study of receptors,” Pharmacol. Ther. 100(2), 101–118 (2003).
[CrossRef] [PubMed]

Min, W.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Nikolaenko, A.

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Physical Review A (Atomic, Molecular, and Optical Physics) 79(1), 013823–013827 (2009).
[CrossRef]

Okamoto, H.

H. Okamoto and K. Yoshihara, “Femtosecond time-resolved coherent Raman scattering from β-carotene in solution. Ultrahigh frequency (11 THz) beating phenomenon and sub-picosecond vibrational relaxation,” Chem. Phys. Lett. 177(6), 568–572 (1991).
[CrossRef]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Piel, J.

A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, “Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion,” Chem. Phys. Lett. 299(3-4), 296–302 (1999).
[CrossRef]

Piletic, I. R.

J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
[CrossRef] [PubMed]

Pohl, D. W.

H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994).
[CrossRef]

Potma, E. O.

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Physical Review A (Atomic, Molecular, and Optical Physics) 79(1), 013823–013827 (2009).
[CrossRef]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Puoris’haag, M.

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Reintjes, J.

Riedle, E.

A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, “Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion,” Chem. Phys. Lett. 299(3-4), 296–302 (1999).
[CrossRef]

Rittweger, E.

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Saar, B. G.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Steinel, T.

J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
[CrossRef] [PubMed]

Stromberg, C.

J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
[CrossRef] [PubMed]

Troppmann, U.

R. de Vivie-Riedle and U. Troppmann, “Femtosecond Lasers for Quantum Information Technology,” Chem. Rev. 107(11), 5082–5100 (2007).
[CrossRef] [PubMed]

Tsai, J. C.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Tsujii, K.

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

Ventalon, C.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004).
[CrossRef] [PubMed]

Vos, M. H.

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004).
[CrossRef] [PubMed]

Wichmann, J.

Wilhelm, T.

A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, “Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion,” Chem. Phys. Lett. 299(3-4), 296–302 (1999).
[CrossRef]

Willig, K. I.

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

Wurzer, A. J.

A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, “Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion,” Chem. Phys. Lett. 299(3-4), 296–302 (1999).
[CrossRef]

Xie, X. S.

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Yamazaki, R.

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

Yoneda, M.

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

Yoshihara, K.

H. Okamoto and K. Yoshihara, “Femtosecond time-resolved coherent Raman scattering from β-carotene in solution. Ultrahigh frequency (11 THz) beating phenomenon and sub-picosecond vibrational relaxation,” Chem. Phys. Lett. 177(6), 568–572 (1991).
[CrossRef]

Zako, M.

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

Zenobi, R.

R. Zenobi, “Analytical tools for the nano world,” Anal. Bioanal. Chem. 390(1), 215–221 (2008).
[CrossRef] [PubMed]

Zhuang, X.

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[CrossRef] [PubMed]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

Zumbusch, A.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Anal. Bioanal. Chem. (1)

R. Zenobi, “Analytical tools for the nano world,” Anal. Bioanal. Chem. 390(1), 215–221 (2008).
[CrossRef] [PubMed]

Appl. Phys., A Mater. Sci. Process. (1)

H. Heinzelmann and D. W. Pohl, “Scanning near-field optical microscopy,” Appl. Phys., A Mater. Sci. Process. 59(2), 89–101 (1994).
[CrossRef]

Chem. Phys. Lett. (2)

H. Okamoto and K. Yoshihara, “Femtosecond time-resolved coherent Raman scattering from β-carotene in solution. Ultrahigh frequency (11 THz) beating phenomenon and sub-picosecond vibrational relaxation,” Chem. Phys. Lett. 177(6), 568–572 (1991).
[CrossRef]

A. J. Wurzer, T. Wilhelm, J. Piel, and E. Riedle, “Comprehensive measurement of the S1 azulene relaxation dynamics and observation of vibrational wavepacket motion,” Chem. Phys. Lett. 299(3-4), 296–302 (1999).
[CrossRef]

Chem. Rev. (1)

R. de Vivie-Riedle and U. Troppmann, “Femtosecond Lasers for Quantum Information Technology,” Chem. Rev. 107(11), 5082–5100 (2007).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

H. Ikagawa, M. Yoneda, M. Iwaki, Z. Isogai, K. Tsujii, R. Yamazaki, T. Kamiya, and M. Zako, “Chemical Toxicity of Indocyanine Green Damages Retinal Pigment Epithelium,” Invest. Ophthalmol. Vis. Sci. 46(7), 2531–2539 (2005).
[CrossRef] [PubMed]

Nat. Methods (2)

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006).
[CrossRef] [PubMed]

B. Huang, S. A. Jones, B. Brandenburg, and X. Zhuang, “Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution,” Nat. Methods 5(12), 1047–1052 (2008).
[CrossRef] [PubMed]

Nat. Photonics (1)

E. Rittweger, K. Y. Han, S. E. Irvine, C. Eggeling, and S. W. Hell, “STED microscopy reveals crystal colour centres with nanometric resolution,” Nat. Photonics 3(3), 144–147 (2009).
[CrossRef]

Opt. Lett. (2)

Pharmacol. Ther. (1)

C. J. Daly and J. C. McGrath, “Fluorescent ligands, antibodies, and proteins for the study of receptors,” Pharmacol. Ther. 100(2), 101–118 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-Dimensional Vibrational Imaging by Coherent Anti-Stokes Raman Scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

S. L. McCall and E. L. Hahn, “Self-Induced Transparency by Pulsed Coherent Light,” Phys. Rev. Lett. 18(21), 908–911 (1967).
[CrossRef]

M. Dyba and S. W. Hell, “Focal Spots of Size λ/23 Open Up Far-Field Fluorescence Microscopy at 33 nm Axial Resolution,” Phys. Rev. Lett. 88(16), 163901 (2002).
[CrossRef] [PubMed]

J. B. Asbury, T. Steinel, C. Stromberg, K. J. Gaffney, I. R. Piletic, A. Goun, and M. D. Fayer, “Hydrogen Bond Dynamics Probed with Ultrafast Infrared Heterodyne-Detected Multidimensional Vibrational Stimulated Echoes,” Phys. Rev. Lett. 91(23), 237402 (2003).
[CrossRef] [PubMed]

Physical Review A (Atomic, Molecular, and Optical Physics) (1)

A. Nikolaenko, V. V. Krishnamachari, and E. O. Potma, “Interferometric switching of coherent anti-Stokes Raman scattering signals in microscopy,” Physical Review A (Atomic, Molecular, and Optical Physics) 79(1), 013823–013827 (2009).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (4)

B. Hein, K. I. Willig, and S. W. Hell, “Stimulated emission depletion (STED) nanoscopy of a fluorescent protein-labeled organelle inside a living cell,” Proc. Natl. Acad. Sci. U.S.A. 105(38), 14271–14276 (2008).
[CrossRef] [PubMed]

C. Ventalon, J. M. Fraser, M. H. Vos, A. Alexandrou, J.-L. Martin, and M. Joffre, “Coherent vibrational climbing in carboxyhemoglobin,” Proc. Natl. Acad. Sci. U.S.A. 101(36), 13216–13220 (2004).
[CrossRef] [PubMed]

T. A. Klar, S. Jakobs, M. Dyba, A. Egner, and S. W. Hell, “Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission,” Proc. Natl. Acad. Sci. U.S.A. 97(15), 8206–8210 (2000).
[CrossRef] [PubMed]

C. L. Evans, E. O. Potma, M. Puoris’haag, D. Côté, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy,” Proc. Natl. Acad. Sci. U.S.A. 102(46), 16807–16812 (2005).
[CrossRef] [PubMed]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang, and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman Scattering Microscopy,” Science 322(5909), 1857–1861 (2008).
[CrossRef] [PubMed]

Other (3)

P. W. Milonni, and J. H. Eberly, Lasers (John Wiley & Sons, New York, 1988).

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley and Sons, New York, 1984).

H. H. Szeto, P. W. Schiller, K. Zhao, and G. Luo, “Fluorescent dyes alter intracellular targeting and function of cell-penetrating tetrapeptides,” The FASEB Journal, 04–1982fje (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Energy level diagram for CARS extended with an additional level |4〉. Level |1〉 is the ground level and initially fully occupied, |2〉 is a vibrational level of the medium, |3〉 is the excited level and level |4〉 the control level which has a fast population exchange with level |2〉. The vertical arrows between levels indicate possible transitions induced by the corresponding laser fields, which are shown far detuned from the transition |1〉 - |3〉 (ωp , ωS and ωpr ), or on resonance with the transition |1〉 - |4〉 (ωctrl ). Through the nonlinear process the medium obtains a polarization at the additional ωcars frequency, which is radiated by the medium.

Fig. 2
Fig. 2

Calculated emission spectrum. The features are (a) the Stokes shifted field of ωS , (b,c,f) Rayleigh scattering of ωS , ωp and ωpr , respectively, (d) the anti-Stokes shifted field of ωp , (e) Coherent-Stokes-Raman scattering (CSRS) and (g) Coherent Anti-Stokes Raman Scattering (CARS) of ωpr .

Fig. 3
Fig. 3

a. Typical population densities after application of the control pulse. For large pulse areas, a significant fraction of the ground state population is transferred to |4〉 and, via non-radiative transitions, to |2〉. Figure 3b. vibrational coherence ρ12 (grey) and corresponding intensity of CARS emission (black) after application of the control pulse. The vibrational coherence is suppressed and CARS emission is saturated by the control pulse beyond a pulse area of ~100 radians.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

ρ ˙ 11 = i 2 ( χ 13 ρ 13 χ 13 * ρ 13 * + χ 14 ρ 14 χ 14 * ρ 14 * ) + ρ 22 R 21 + ρ 33 R 31 + ρ 44 R 41
ρ ˙ 22 = i 2 ( χ 23 ρ 23 χ 23 * ρ 23 * + χ 24 ρ 24 χ 24 * ρ 24 * ) + ρ 33 R 32 + ρ 44 R 41 ρ 22 R 24 ρ 22 R 21
ρ ˙ 33 = i 2 ( χ 13 ρ 13 χ 13 * ρ 13 * + χ 23 ρ 23 χ 23 * ρ 23 * ) ( R 31 + R 32 + R 34 ) ρ 33
ρ ˙ 44 = i 2 ( χ 14 ρ 14 χ 14 * ρ 14 * + χ 24 ρ 24 χ 24 * ρ 24 * ) + ρ 33 R 34 ρ 44 R 41 ρ 44 R 42 + ρ 22 R 24
ρ ˙ 12 = i 2 ( χ 13 * ρ 23 * χ 23 ρ 13 + χ 14 * ρ 24 * χ 24 ρ 14 ) Γ 12 ρ 12
ρ ˙ 13 = i 2 ( χ 13 * ( ρ 33 ρ 11 ) + χ 14 * ρ 34 * χ 23 * ρ 12 ) Γ 13 ρ 13
ρ ˙ 14 = i 2 ( χ 14 * ( ρ 44 ρ 11 ) + χ 13 * ρ 34 χ 24 * ρ 12 ) Γ 14 ρ 14
ρ ˙ 23 = i 2 ( χ 23 * ( ρ 33 ρ 22 ) + χ 24 * ρ 34 * χ 13 * ρ 12 * ) Γ 23 ρ 23
ρ ˙ 24 = i 2 ( χ 24 * ( ρ 44 ρ 22 ) + χ 23 * ρ 34 χ 14 * ρ 12 * ) Γ 24 ρ 24
ρ ˙ 34 = i 2 ( χ 13 ρ 14 + χ 23 ρ 24 χ 14 * ρ 13 * χ 24 * ρ 23 * ) Γ 34 ρ 34

Metrics