Abstract

We report on the demonstration of a narrow-line, cw orange 593-nm laser achieved via intracavity sum-frequency generation (SFG) of a diode-pumped dual-wavelength (1064 and 1342 nm) Nd:YVO4 laser using two volume Bragg grating (VBG) reflectors. At diode pump power of up to 3.6 W, the 593-nm intracavity SFG laser radiates at the single longitudinal mode of spectral linewidth as narrow as ~15 MHz. More than 23-mW single-longitudinal-mode or 40-mW, <8.5-GHz (10-pm) linewidth (at 4.2-W diode pump power) 593-nm orange lights can be obtained from this compact laser system. Spectral tuning of the orange light was performed via the temperature tuning of the two VBGs in this system, achieving an effective tuning rate of ~5 pm/°C.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Moosmüller and J. D. Vance, “Sum-frequency generation of continuous-wave sodium D(2) resonance radiation,” Opt. Lett. 22(15), 1135–1137 (1997).
    [CrossRef] [PubMed]
  2. H. M. Pask and J. A. Piper, “Efficient all-solid-state yellow laser source producing 1.2-W average power,” Opt. Lett. 24(21), 1490–1492 (1999).
    [CrossRef] [PubMed]
  3. Y. F. Chen, “High-power diode-pumped actively Q-switched Nd:YVO4 self-Raman laser: influence of dopant concentration,” Opt. Lett. 29(16), 1915–1917 (2004).
    [CrossRef] [PubMed]
  4. C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. 9(2), 254 (1973).
    [CrossRef]
  5. R. W. Farley and P. D. Dao, “Development of an intracavity-summed multiple-wavelength Nd:YAG laser for a rugged, solid-state sodium lidar system,” Appl. Opt. 34(21), 4269–4273 (1995).
    [CrossRef] [PubMed]
  6. E. Mimoun, L. De Sarlo, J. J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589 nm light with near-unit efficiency,” Opt. Express 16(23), 18684–18691 (2008).
    [CrossRef] [PubMed]
  7. J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. L. Mortensen, P. Buchhave, and F. Laurell, “Efficient all solid-state continuous-wave yellow-orange light source,” Opt. Express 13(4), 1188–1192 (2005).
    [CrossRef] [PubMed]
  8. Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
    [CrossRef]
  9. Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, “Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO(4) dual-wavelength laser with periodically poled lithium niobate,” Opt. Lett. 27(20), 1809–1811 (2002).
    [CrossRef] [PubMed]
  10. Y. Y. Lin, S. Y. Chen, A. C. Chiang, R. Y. Tu, Y. C. Huang, Y. F. Chen, and Y. H. Chen, “Single-longitudinal-mode, tunable dual-wavelength,CW Nd:YVO(4) laser,” Opt. Express 14(12), 5329–5334 (2006).
    [CrossRef] [PubMed]
  11. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, and V. I. Smirnov, “High-efficiency bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999).
    [CrossRef] [PubMed]
  12. O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High-frequency Bragg gratings in a photothermorefractive glass,” Opt. Lett. 25(23), 1693–1695 (2000).
    [CrossRef] [PubMed]
  13. T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, and M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006).
    [CrossRef] [PubMed]
  14. S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
    [CrossRef]
  15. B. Jacobsson, V. Pasiskevicius, and F. Laurell, “Single-longitudinal-mode Nd-laser with a Bragg-grating Fabry-Perot cavity,” Opt. Express 14(20), 9284–9292 (2006).
    [CrossRef] [PubMed]
  16. N. Vorobiev, L. Glebov, and V. Smirnov, “Single-frequency-mode Q-switched Nd:YAG and Er:glass lasers controlled by volume Bragg gratings,” Opt. Express 16(12), 9199–9204 (2008).
    [CrossRef] [PubMed]
  17. T. Baer, “Large-amplitude fluctuations due to longitudinal mode coupling in diode-pumped intracavity-doubled Nd:YAG lasers,” J. Opt. Soc. Am. B 3(9), 1175–1180 (1986).
    [CrossRef]
  18. S. S. Yang, T. Chung, C. W. Chen, and H. C. Yang, “Noise elimination of intracavity doubled lasers by single-mode operation with volumetric Bragg grating,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CTuU7.
  19. R. A. Rupp and F. W. Drees, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39(4), 223–229 (1986).
    [CrossRef]
  20. G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
    [CrossRef]
  21. H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
    [CrossRef]
  22. P. Jelger, P. Wang, J. K. Sahu, F. Laurell, and W. A. Clarkson, “High-power linearly-polarized operation of a cladding-pumped Yb fibre laser using a volume Bragg grating for wavelength selection,” Opt. Express 16(13), 9507–9512 (2008).
    [CrossRef] [PubMed]

2008 (3)

2006 (4)

2005 (2)

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

J. Janousek, S. Johansson, P. Tidemand-Lichtenberg, S. Wang, J. L. Mortensen, P. Buchhave, and F. Laurell, “Efficient all solid-state continuous-wave yellow-orange light source,” Opt. Express 13(4), 1188–1192 (2005).
[CrossRef] [PubMed]

2004 (1)

2002 (1)

2000 (3)

Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[CrossRef]

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

O. M. Efimov, L. B. Glebov, and V. I. Smirnov, “High-frequency Bragg gratings in a photothermorefractive glass,” Opt. Lett. 25(23), 1693–1695 (2000).
[CrossRef] [PubMed]

1999 (2)

1997 (1)

1995 (1)

1986 (2)

1973 (1)

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. 9(2), 254 (1973).
[CrossRef]

Baer, T.

Bass, M.

Bethea, C. G.

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. 9(2), 254 (1973).
[CrossRef]

Bohaty, L.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

Buchhave, P.

Calvez, S.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

Chen, S. Y.

Chen, Y. F.

Chen, Y. H.

Chiang, A. C.

Chung, T. Y.

Clarkson, W. A.

Dalibard, J.

Dao, P. D.

Dawson, M. D.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

De Sarlo, L.

Drees, F. W.

R. A. Rupp and F. W. Drees, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39(4), 223–229 (1986).
[CrossRef]

Efimov, O. M.

Farley, R. W.

Gerbier, F.

Giet, S.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

Glebov, L.

Glebov, L. B.

Glebova, L. N.

Guina, M.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

Harkonen, A.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

Hellwig, H.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

Huang, Y. C.

Jacobsson, B.

Janousek, J.

Jelger, P.

Johansson, S.

Laurell, F.

Liebertz, J.

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

Lin, T. C.

Lin, Y. Y.

Mimoun, E.

Moosmüller, H.

Mortensen, J. L.

Okhotnikov, O.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

Pasiskevicius, V.

Pask, H. M.

Pessa, M.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

Piper, J. A.

Rapaport, A.

Richardson, K. C.

Richardson, M. C.

Rupp, R. A.

R. A. Rupp and F. W. Drees, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39(4), 223–229 (1986).
[CrossRef]

Sahu, J. K.

Sevian, A.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

Smirnov, V.

Smirnov, V. I.

Sun, H. D.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

Suomalainen, S.

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

Tidemand-Lichtenberg, P.

Tsai, S. W.

Tu, R. Y.

Vance, J. D.

Venus, G. B.

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

Vorobiev, N.

Wang, P.

Wang, S.

Wang, S. C.

Wong, B. C.

Zondy, J. J.

Appl. Opt. (2)

Appl. Phys. B (2)

R. A. Rupp and F. W. Drees, “Light-induced scattering in photorefractive crystals,” Appl. Phys. B 39(4), 223–229 (1986).
[CrossRef]

Y. F. Chen, “cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B 70(4), 475–478 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

C. G. Bethea, “Megawatt power at 1.318 μ in Nd3+:YAG and simultaneous oscillation at both 1.06 and 1.318 μ,” IEEE J. Quantum Electron. 9(2), 254 (1973).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

S. Giet, H. D. Sun, S. Calvez, M. D. Dawson, S. Suomalainen, A. Harkonen, M. Guina, O. Okhotnikov, and M. Pessa, “Spectral narrowing and locking of a vertical-external-cavity surface-emitting laser using an intracavity volume Bragg grating,” IEEE Photon. Technol. Lett. 18(16), 1786–1788 (2006).
[CrossRef]

J. Appl. Phys. (1)

H. Hellwig, J. Liebertz, and L. Bohaty, “Linear optical properties of the monoclinic bismuth borate BiB3O6,” J. Appl. Phys. 88(1), 240–244 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Express (6)

Opt. Lett. (6)

Proc. SPIE (1)

G. B. Venus, A. Sevian, V. I. Smirnov, and L. B. Glebov, “High-brightness narrow-line laser diode source with volume Bragg-grating feedback,” Proc. SPIE 5711, 166–176 (2005).
[CrossRef]

Other (1)

S. S. Yang, T. Chung, C. W. Chen, and H. C. Yang, “Noise elimination of intracavity doubled lasers by single-mode operation with volumetric Bragg grating,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper CTuU7.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic arrangement of the cw 593-nm intracavity SFG laser system in a diode-pumped, dual-wavelength Nd:YVO4 laser using two VBG reflectors.

Fig. 2
Fig. 2

Measured output spectra of the (a) 1064-nm and (b) 1342-nm lasers from the two-VBG laser system at 4.2-W diode pump power when the VBGs were worked at 25°C (solid red lines) or tuned to 35°C (dashed green lines). The spectra measured from the same laser system but with typical dielectric-coated laser mirrors are also plotted for comparisons (solid grey lines).

Fig. 3
Fig. 3

Fabry-Perot scanning trace of the 593-nm output from the intracavity SFG system at 3.6-W diode pump power. The grey trace is the Fabry-Perot ramp voltage. The red trace is the Fabry-Perot signal, indicating the SLM operation of the 593-nm output. The inset shows an expanded Fabry-Perot signal from which the linewidth of the SLM 593-nm light is estimated (~15 MHz).

Fig. 4
Fig. 4

Recorded power fluctuations of the 593-nm lights output from the ISFG system constructed with the VBG mirrors (red trace) and with the dielectric-coated mirrors (black trace).

Fig. 5
Fig. 5

Measured two infrared laser wavelengths (upper plot) and SFG orange wavelength (lower plot) as a function of the temperature of the two VBGs. Temperature tuning rates of ~7, ~11, and ~5 pm/°C for the two infrared and the orange lasers were achieved, respectively.

Fig. 6
Fig. 6

Measured 593-nm SFG output power (solid red triangles) as a function of the diode pump power. The dashed blue line is the corresponding quadratic fitting curve.

Metrics