Abstract

A thin metal film near-field superlens, as originally suggested by Pendry and realized by Fang et al. and Melville et al., is investigated with emphasis on materials suitable for integration on a lab-on-a-chip platform. A chemically resistant cyclo-olefin copolymer (COC), mr-I-T85 from microresist technology, is applied as dielectric matrix/spacer for an Ag thin film superlens. The superlens successfully resolves 80 nm half-pitch gratings when illuminated with UV radiation at a free space wavelength of 365 nm. The superlens design, fabrication and characterization is discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37 - 43 (2004).
    [CrossRef]
  2. J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
    [CrossRef] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 - 537 (2005).
    [CrossRef] [PubMed]
  4. D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127 - 2134 (2005).
    [CrossRef] [PubMed]
  5. V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 509-522 (1987).
  6. Z. T. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, "Translation of nanoantenna hot spots by a metal-dielectric composite superlens," Appl. Phys. Lett. 95, 033114 (2009).
    [CrossRef]
  7. R. Holt and T. Cotton, "Surface-enhanced resonance Raman and electrochemical investigation of Glucose oxidase catalysis at a silver electrode," J. Am. Chem. Soc. 111, 2815-2821 (1989).
    [CrossRef]
  8. M. Yang, F. Chung, and M. Thompson, "Acoustic network analysis as a novel technique for studying protein adsorption and denaturation at surfaces," Anal. Chem. 65, 3713-3716 (1993).
    [CrossRef]
  9. K. Brown, A. Fox, and M. Natan, "Morphology-dependent electrochemistry of cytochrome c at Au colloidmodified SnO2 electrodes," J. Am. Chem. Soc. 118, 1154-1157 (1996).
    [CrossRef]
  10. T. A. P. GmbH, "TOPAS Advanced Polymers," www.topas.com (2009).
  11. R. R. Lamonte and D. McNally, "Uses and processing of cyclic olefin copolymers," Plast. Eng. 56, 51-55 (2000).
  12. O. Gustafsson, K. B. Mogensen, and J. P. Kutter, "Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography," Electrophoresis 29 (2008).
    [CrossRef] [PubMed]
  13. M. J. Weber, Handbook of optical materials (CRC Press, Boca Raton, 2003).
  14. M. Scholer and R. J. Blaikie, "Simulations of surface roughness effects in planar superlenses," J. Opt. A: Pure Appl. Opt. 11, 105503 (2009).
    [CrossRef]
  15. H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
    [CrossRef]
  16. P. Chaturvedi, K. Hsu, S. Zhang, and N. Fang, "New frontiers of metamaterials: design and fabrication," MRS Bull. 33, 915 - 920 (2008).
    [CrossRef]
  17. L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
    [CrossRef]

2009 (3)

Z. T. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, "Translation of nanoantenna hot spots by a metal-dielectric composite superlens," Appl. Phys. Lett. 95, 033114 (2009).
[CrossRef]

M. Scholer and R. J. Blaikie, "Simulations of surface roughness effects in planar superlenses," J. Opt. A: Pure Appl. Opt. 11, 105503 (2009).
[CrossRef]

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

2008 (2)

P. Chaturvedi, K. Hsu, S. Zhang, and N. Fang, "New frontiers of metamaterials: design and fabrication," MRS Bull. 33, 915 - 920 (2008).
[CrossRef]

O. Gustafsson, K. B. Mogensen, and J. P. Kutter, "Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography," Electrophoresis 29 (2008).
[CrossRef] [PubMed]

2005 (3)

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 - 537 (2005).
[CrossRef] [PubMed]

D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127 - 2134 (2005).
[CrossRef] [PubMed]

2004 (1)

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37 - 43 (2004).
[CrossRef]

2000 (2)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
[CrossRef] [PubMed]

R. R. Lamonte and D. McNally, "Uses and processing of cyclic olefin copolymers," Plast. Eng. 56, 51-55 (2000).

1996 (1)

K. Brown, A. Fox, and M. Natan, "Morphology-dependent electrochemistry of cytochrome c at Au colloidmodified SnO2 electrodes," J. Am. Chem. Soc. 118, 1154-1157 (1996).
[CrossRef]

1993 (1)

M. Yang, F. Chung, and M. Thompson, "Acoustic network analysis as a novel technique for studying protein adsorption and denaturation at surfaces," Anal. Chem. 65, 3713-3716 (1993).
[CrossRef]

1989 (1)

R. Holt and T. Cotton, "Surface-enhanced resonance Raman and electrochemical investigation of Glucose oxidase catalysis at a silver electrode," J. Am. Chem. Soc. 111, 2815-2821 (1989).
[CrossRef]

1987 (1)

V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 509-522 (1987).

Ambati, M.

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Blaikie, R. J.

M. Scholer and R. J. Blaikie, "Simulations of surface roughness effects in planar superlenses," J. Opt. A: Pure Appl. Opt. 11, 105503 (2009).
[CrossRef]

D. O. S. Melville and R. J. Blaikie, "Super-resolution imaging through a planar silver layer," Opt. Express 13, 2127 - 2134 (2005).
[CrossRef] [PubMed]

Brown, K.

K. Brown, A. Fox, and M. Natan, "Morphology-dependent electrochemistry of cytochrome c at Au colloidmodified SnO2 electrodes," J. Am. Chem. Soc. 118, 1154-1157 (1996).
[CrossRef]

Chaturvedi, P.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

P. Chaturvedi, K. Hsu, S. Zhang, and N. Fang, "New frontiers of metamaterials: design and fabrication," MRS Bull. 33, 915 - 920 (2008).
[CrossRef]

Chung, F.

M. Yang, F. Chung, and M. Thompson, "Acoustic network analysis as a novel technique for studying protein adsorption and denaturation at surfaces," Anal. Chem. 65, 3713-3716 (1993).
[CrossRef]

Cotton, T.

R. Holt and T. Cotton, "Surface-enhanced resonance Raman and electrochemical investigation of Glucose oxidase catalysis at a silver electrode," J. Am. Chem. Soc. 111, 2815-2821 (1989).
[CrossRef]

Durant, S.

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Fang, N.

P. Chaturvedi, K. Hsu, S. Zhang, and N. Fang, "New frontiers of metamaterials: design and fabrication," MRS Bull. 33, 915 - 920 (2008).
[CrossRef]

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 - 537 (2005).
[CrossRef] [PubMed]

Fang, N. X.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

Fox, A.

K. Brown, A. Fox, and M. Natan, "Morphology-dependent electrochemistry of cytochrome c at Au colloidmodified SnO2 electrodes," J. Am. Chem. Soc. 118, 1154-1157 (1996).
[CrossRef]

Gustafsson, O.

O. Gustafsson, K. B. Mogensen, and J. P. Kutter, "Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography," Electrophoresis 29 (2008).
[CrossRef] [PubMed]

Holt, R.

R. Holt and T. Cotton, "Surface-enhanced resonance Raman and electrochemical investigation of Glucose oxidase catalysis at a silver electrode," J. Am. Chem. Soc. 111, 2815-2821 (1989).
[CrossRef]

Hsu, K.

P. Chaturvedi, K. Hsu, S. Zhang, and N. Fang, "New frontiers of metamaterials: design and fabrication," MRS Bull. 33, 915 - 920 (2008).
[CrossRef]

Islam, M. S.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

Kildishev, A. V.

Z. T. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, "Translation of nanoantenna hot spots by a metal-dielectric composite superlens," Appl. Phys. Lett. 95, 033114 (2009).
[CrossRef]

Kobayashi, N. P.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

Kutter, J. P.

O. Gustafsson, K. B. Mogensen, and J. P. Kutter, "Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography," Electrophoresis 29 (2008).
[CrossRef] [PubMed]

Lamonte, R. R.

R. R. Lamonte and D. McNally, "Uses and processing of cyclic olefin copolymers," Plast. Eng. 56, 51-55 (2000).

Lee, H.

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 - 537 (2005).
[CrossRef] [PubMed]

Liu, Z. T.

Z. T. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, "Translation of nanoantenna hot spots by a metal-dielectric composite superlens," Appl. Phys. Lett. 95, 033114 (2009).
[CrossRef]

McNally, D.

R. R. Lamonte and D. McNally, "Uses and processing of cyclic olefin copolymers," Plast. Eng. 56, 51-55 (2000).

Melville, D. O. S.

Mogensen, K. B.

O. Gustafsson, K. B. Mogensen, and J. P. Kutter, "Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography," Electrophoresis 29 (2008).
[CrossRef] [PubMed]

Natan, M.

K. Brown, A. Fox, and M. Natan, "Morphology-dependent electrochemistry of cytochrome c at Au colloidmodified SnO2 electrodes," J. Am. Chem. Soc. 118, 1154-1157 (1996).
[CrossRef]

Pendry, J. B.

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37 - 43 (2004).
[CrossRef]

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
[CrossRef] [PubMed]

Scholer, M.

M. Scholer and R. J. Blaikie, "Simulations of surface roughness effects in planar superlenses," J. Opt. A: Pure Appl. Opt. 11, 105503 (2009).
[CrossRef]

Shalaev, V. M.

Z. T. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, "Translation of nanoantenna hot spots by a metal-dielectric composite superlens," Appl. Phys. Lett. 95, 033114 (2009).
[CrossRef]

V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 509-522 (1987).

Smith, D. R.

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37 - 43 (2004).
[CrossRef]

Srituravanich, W.

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Stockman, M. I.

V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 509-522 (1987).

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 - 537 (2005).
[CrossRef] [PubMed]

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Thompson, M.

M. Yang, F. Chung, and M. Thompson, "Acoustic network analysis as a novel technique for studying protein adsorption and denaturation at surfaces," Anal. Chem. 65, 3713-3716 (1993).
[CrossRef]

Thoreson, M. D.

Z. T. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, "Translation of nanoantenna hot spots by a metal-dielectric composite superlens," Appl. Phys. Lett. 95, 033114 (2009).
[CrossRef]

Vj, L.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

Wang, S. Y.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

Williams, R. S.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

Wu, W.

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

Xiong, Y.

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Yang, M.

M. Yang, F. Chung, and M. Thompson, "Acoustic network analysis as a novel technique for studying protein adsorption and denaturation at surfaces," Anal. Chem. 65, 3713-3716 (1993).
[CrossRef]

Zhang, S.

P. Chaturvedi, K. Hsu, S. Zhang, and N. Fang, "New frontiers of metamaterials: design and fabrication," MRS Bull. 33, 915 - 920 (2008).
[CrossRef]

Zhang, X.

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 - 537 (2005).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. Yang, F. Chung, and M. Thompson, "Acoustic network analysis as a novel technique for studying protein adsorption and denaturation at surfaces," Anal. Chem. 65, 3713-3716 (1993).
[CrossRef]

Appl. Phys. Lett. (1)

Z. T. Liu, M. D. Thoreson, A. V. Kildishev, and V. M. Shalaev, "Translation of nanoantenna hot spots by a metal-dielectric composite superlens," Appl. Phys. Lett. 95, 033114 (2009).
[CrossRef]

Electrophoresis (1)

O. Gustafsson, K. B. Mogensen, and J. P. Kutter, "Underivatized cyclic olefin copolymer as substrate material and stationary phase for capillary and microchip electrochromatography," Electrophoresis 29 (2008).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (2)

R. Holt and T. Cotton, "Surface-enhanced resonance Raman and electrochemical investigation of Glucose oxidase catalysis at a silver electrode," J. Am. Chem. Soc. 111, 2815-2821 (1989).
[CrossRef]

K. Brown, A. Fox, and M. Natan, "Morphology-dependent electrochemistry of cytochrome c at Au colloidmodified SnO2 electrodes," J. Am. Chem. Soc. 118, 1154-1157 (1996).
[CrossRef]

J. Opt. A: Pure Appl. Opt. (1)

M. Scholer and R. J. Blaikie, "Simulations of surface roughness effects in planar superlenses," J. Opt. A: Pure Appl. Opt. 11, 105503 (2009).
[CrossRef]

MRS Bull. (1)

P. Chaturvedi, K. Hsu, S. Zhang, and N. Fang, "New frontiers of metamaterials: design and fabrication," MRS Bull. 33, 915 - 920 (2008).
[CrossRef]

Nano Lett. (1)

L. Vj, N. P. Kobayashi, M. S. Islam, W. Wu, P. Chaturvedi, N. X. Fang, S. Y. Wang, and R. S. Williams, "Ultrasmooth Silver Thin Films Deposited with a Germanium Nucleation Layer," Nano Lett. 9, 178-182 (2009).
[CrossRef]

New J. Phys. (1)

H. Lee, Y. Xiong, N. Fang,W. Srituravanich, S. Durant, M. Ambati, C. Sun, and X. Zhang, "Realization of optical superlens imaging below the diffraction limit," New J. Phys. 7, 255 (2005).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

J. B. Pendry, "Negative refraction makes a perfect lens," Phys. Rev. Lett. 85, 3966 - 3969 (2000).
[CrossRef] [PubMed]

Phys. Today (1)

J. B. Pendry and D. R. Smith, "Reversing light with negative refraction," Phys. Today 57, 37 - 43 (2004).
[CrossRef]

Plast. Eng. (1)

R. R. Lamonte and D. McNally, "Uses and processing of cyclic olefin copolymers," Plast. Eng. 56, 51-55 (2000).

Science (1)

N. Fang, H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science 308, 534 - 537 (2005).
[CrossRef] [PubMed]

Sov. Phys. JETP (1)

V. M. Shalaev and M. I. Stockman, "Optical properties of fractal clusters (susceptibility, surface enhanced Raman scattering by impurities)," Sov. Phys. JETP 65, 509-522 (1987).

Other (2)

M. J. Weber, Handbook of optical materials (CRC Press, Boca Raton, 2003).

T. A. P. GmbH, "TOPAS Advanced Polymers," www.topas.com (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Near-field superlens design using UV-lithography readout. (a) Exposure of negative photoresist through the quartz/Cr mask and the Ag superlens of a grating pattern with period 2Λ. (b) AFM scan of the exposed and developed photoresist.

Fig. 2.
Fig. 2.

Finite element simulation of the intensity-distribution (|E|/|E 0|)2 for six grating periods illuminated by 365 nm radiation. The grating has a half-pitch of 80 nm.

Fig. 3.
Fig. 3.

Finite-element modeling of the intensity-distribution (|E|/|E 0|)2 above the superlens when illuminated through gratings of different period. To simplify the plot and ease comparison, the mr-I T85 and the silver layers are not depicted. Panels (a)–(c) are with Λ=60, 70, and 80 nm and a silver superlens film. Panel (d) is a reference with Λ=80 nm where the 35 nm Ag layer has been replaced by 35 nm of mr-I T85. Panel (e) is the intensity cross-section 15 nm into the resist as a function of the normalized position x with respect to the grating period Λ.

Fig. 4.
Fig. 4.

Schematic drawing of the processflow. (1) Quartz wafer. (2) Spincoat of ZEP520A and deposition of Al. (3) EBL exposure. (4) Development. (5) RIE etch quartz. (6) Deposition of Cr. (7) Removal of ZEP520A. (8) UV-lithography of AZ5214e. (9) Development. (10) Al deposition. (11) Lift-off. (12) Spincoat mr-I T85. (13) RIE etch mr-I T85. (14) Ag deposition. (15) Spincoat mr-UVL 6000.

Fig. 5.
Fig. 5.

SEM image of the 20×20 µm opening in the Al layer to the 80 nm half-pitch quartz/chrome gratings.

Fig. 6.
Fig. 6.

The fabricated near-field superlens. AFM micrographs and surface profiler scans after different process steps: (a) Cr mask with 80 nm half-pitch on glass substrate. (b) Spincoating and back-etch of 40 nm thick mr-I T85 film, which serves as dielectic matrix/spacer. A surface roughness Rq below 0.5 nm is achieved. (c) 35 nm Ag film, with a Rq below 0.9 nm.

Fig. 7.
Fig. 7.

(a) 8×8 µm AFM scan of the recorded image of 80 nm half-pitch gratings in the mr-UVL 6000 resist. The exposure was done through the Ag superlens. (b) 8×8 µm AFM scan of the obtained image of 80 nm half-pitch gratings in the resist where the Ag layer was replaced with mr-I T85. (c) Height scan of the images (a) and (b).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

× × E = ω 2 c 2 ε E ,
Z = 1 4 π 1 a 2 ε λ 2 ,

Metrics