Abstract

We have fabricated high-Q photonic crystal nanocavities with a lateral p-i-n structure to demonstrate low-power and high-speed electro-optic modulation in a silicon chip. GHz operation is demonstrated at a very low (μW level) operating power, which is about 4.6 times lower than that reported for other cavities in silicon. This low-power operation is due to the small size and high-Q of the photonic crystal nanocavity.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
    [CrossRef] [PubMed]
  2. S. Itabashi, H. Fukuda, T. Tsuchizawa, T. Watanabe, and K. Yamada, “Silicon wire waveguides and silicon microphotonic devices,” NTT Technical Review 4, 48–56 (2006).
  3. T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
    [CrossRef]
  4. T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
    [CrossRef]
  5. T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-19-2575 .
    [CrossRef] [PubMed]
  6. Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-3-341 .
    [CrossRef] [PubMed]
  7. M. Slojačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy Rev. E 66, 055601 (2002).
    [CrossRef]
  8. K. Nozaki and T. Baba, “Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
    [CrossRef]
  9. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [CrossRef] [PubMed]
  10. K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in Proceeding of IEEE Conference on 4th Group IV Photonics, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 116–118.
  11. L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6851 .
    [CrossRef] [PubMed]
  12. C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. Sleboda, “A 40Gb silicon photonics transceiver,” Proc. SPIE 6477, 64770N (2007).
    [CrossRef]
  13. B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140 .
    [CrossRef] [PubMed]
  14. E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
    [CrossRef]
  15. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
    [CrossRef]
  16. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [CrossRef]
  17. H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
    [CrossRef] [PubMed]
  18. L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
    [CrossRef]
  19. T. Hodson, B. Miao, C. Chen, A. Sharkawy, and D. W. Prather, “Silicon based photonic crystal electro-optic modulator utilizing the plasma dispersion effect,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), CThG7.
  20. K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-15-670 .
    [PubMed]
  21. T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
    [CrossRef] [PubMed]
  22. J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
    [CrossRef]
  23. E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
    [CrossRef]
  24. R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
    [CrossRef]
  25. T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26(11), 1396–1403 (2008).
    [CrossRef]
  26. Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-430 .
    [CrossRef] [PubMed]
  27. A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-660 .
    [CrossRef] [PubMed]

2009 (2)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[CrossRef]

2008 (3)

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26(11), 1396–1403 (2008).
[CrossRef]

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

2007 (7)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. Sleboda, “A 40Gb silicon photonics transceiver,” Proc. SPIE 6477, 64770N (2007).
[CrossRef]

B. Schmidt, Q. Xu, J. Shakya, S. Manipatruni, and M. Lipson, “Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes,” Opt. Express 15(6), 3140–3148 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-6-3140 .
[CrossRef] [PubMed]

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Q. Xu, S. Manipatruni, B. Schmidt, J. Shakya, and M. Lipson, “12.5 Gbit/s carrier-injection-based silicon micro-ring silicon modulators,” Opt. Express 15(2), 430–436 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-2-430 .
[CrossRef] [PubMed]

A. Liu, L. Liao, D. Rubin, H. Nguyen, B. Ciftcioglu, Y. Chetrit, N. Izhaky, and M. Paniccia, “High-speed optical modulation based on carrier depletion in a silicon waveguide,” Opt. Express 15(2), 660–668 (2007), http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-2-660 .
[CrossRef] [PubMed]

2006 (5)

S. Itabashi, H. Fukuda, T. Tsuchizawa, T. Watanabe, and K. Yamada, “Silicon wire waveguides and silicon microphotonic devices,” NTT Technical Review 4, 48–56 (2006).

Q. Xu and M. Lipson, “Carrier-induced optical bistability in silicon ring resonators,” Opt. Lett. 31(3), 341–343 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=ol-31-3-341 .
[CrossRef] [PubMed]

K. Nozaki and T. Baba, “Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

L. Zhou and A. W. Poon, “Silicon electro-optic modulators using p-i-n diodes embedded 10-micron-diameter microdisk resonators,” Opt. Express 14(15), 6851–6857 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-15-6851 .
[CrossRef] [PubMed]

2005 (3)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-19-2575 .
[CrossRef] [PubMed]

2004 (2)

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

2002 (2)

K. Srinivasan and O. Painter, “Momentum space design of high-Q photonic crystal optical cavities,” Opt. Express 10(15), 670–684 (2002), http://www.opticsinfobase.org/abstract.cfm?URI=oe-10-15-670 .
[PubMed]

M. Slojačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy Rev. E 66, 055601 (2002).
[CrossRef]

1987 (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Almeida, V. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Analui, B.

C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. Sleboda, “A 40Gb silicon photonics transceiver,” Proc. SPIE 6477, 64770N (2007).
[CrossRef]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Baba, T.

K. Nozaki and T. Baba, “Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

Baek, J.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Barrios, C. A.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Bennett, B.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Bravo-Abad, J.

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[CrossRef]

Chen, R. T.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

Chen, X.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

Chetrit, Y.

Ciftcioglu, B.

Fink, Y.

M. Slojačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy Rev. E 66, 055601 (2002).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Fukuda, H.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

S. Itabashi, H. Fukuda, T. Tsuchizawa, T. Watanabe, and K. Yamada, “Silicon wire waveguides and silicon microphotonic devices,” NTT Technical Review 4, 48–56 (2006).

Gu, L.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

Gunn, C.

C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. Sleboda, “A 40Gb silicon photonics transceiver,” Proc. SPIE 6477, 64770N (2007).
[CrossRef]

Ibanescu, M.

M. Slojačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy Rev. E 66, 055601 (2002).
[CrossRef]

Inokawa, H.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Ippen, E. P.

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[CrossRef]

Itabashi, S.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

S. Itabashi, H. Fukuda, T. Tsuchizawa, T. Watanabe, and K. Yamada, “Silicon wire waveguides and silicon microphotonic devices,” NTT Technical Review 4, 48–56 (2006).

Izhaky, N.

Jiang, W.

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

Joannopoulos, J.

M. Slojačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy Rev. E 66, 055601 (2002).
[CrossRef]

Johnson, S.

M. Slojačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy Rev. E 66, 055601 (2002).
[CrossRef]

Ju, Y.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kim, S.-B.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kim, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Kuramochi, E.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-19-2575 .
[CrossRef] [PubMed]

Kwon, S.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Lee, Y.-H.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Liang, Y.

C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. Sleboda, “A 40Gb silicon photonics transceiver,” Proc. SPIE 6477, 64770N (2007).
[CrossRef]

Liao, L.

Lipson, M.

Liu, A.

Manipatruni, S.

Mitsugi, S.

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-19-2575 .
[CrossRef] [PubMed]

Narasimha, A.

C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. Sleboda, “A 40Gb silicon photonics transceiver,” Proc. SPIE 6477, 64770N (2007).
[CrossRef]

Nguyen, H.

Nishiguchi, K.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26(11), 1396–1403 (2008).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-19-2575 .
[CrossRef] [PubMed]

Nozaki, K.

K. Nozaki and T. Baba, “Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

Painter, O.

Panepucci, R. R.

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

Paniccia, M.

Park, H.-G.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Poon, A. W.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

Rubin, D.

Schmidt, B.

Shakya, J.

Shinojima, H.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

Shinya, A.

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-19-2575 .
[CrossRef] [PubMed]

Sleboda, T.

C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. Sleboda, “A 40Gb silicon photonics transceiver,” Proc. SPIE 6477, 64770N (2007).
[CrossRef]

Slojacic, M.

M. Slojačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy Rev. E 66, 055601 (2002).
[CrossRef]

Soljacic, M.

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[CrossRef]

Soref, R.

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

Srinivasan, K.

Tanabe, T.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26(11), 1396–1403 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, “Fast bistable all-optical switch and memory on a silicon photonic crystal on-chip,” Opt. Lett. 30(19), 2575–2577 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=ol-30-19-2575 .
[CrossRef] [PubMed]

Taniyama, H.

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

T. Tanabe, H. Taniyama, and M. Notomi, “Carrier diffusion and recombination in photonic crystal nanocavity optical switches,” J. Lightwave Technol. 26(11), 1396–1403 (2008).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Tsuchizawa, T.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

S. Itabashi, H. Fukuda, T. Tsuchizawa, T. Watanabe, and K. Yamada, “Silicon wire waveguides and silicon microphotonic devices,” NTT Technical Review 4, 48–56 (2006).

Watanabe, T.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

S. Itabashi, H. Fukuda, T. Tsuchizawa, T. Watanabe, and K. Yamada, “Silicon wire waveguides and silicon microphotonic devices,” NTT Technical Review 4, 48–56 (2006).

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

Xu, Q.

Yamada, K.

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

S. Itabashi, H. Fukuda, T. Tsuchizawa, T. Watanabe, and K. Yamada, “Silicon wire waveguides and silicon microphotonic devices,” NTT Technical Review 4, 48–56 (2006).

Yang, J.-K.

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Zhou, L.

Appl. Phys. Lett. (6)

T. Tanabe, M. Notomi, A. Shinya, S. Mitsugi, and E. Kuramochi, “All-optical switches on a silicon chip realized using photonic crystal nanocavities,” Appl. Phys. Lett. 87(15), 151112 (2005).
[CrossRef]

T. Tanabe, K. Yamada, K. Nishiguchi, A. Shinya, E. Kuramochi, H. Inokawa, M. Notomi, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Fast all-optical switching using ion-implanted silicon photonic crystal nanocavities,” Appl. Phys. Lett. 90(3), 031115 (2007).
[CrossRef]

K. Nozaki and T. Baba, “Lasing characteristics with ultimate-small modal volume in point shift photonic crystal nanolasers,” Appl. Phys. Lett. 88, 211101 (2006).
[CrossRef]

E. Kuramochi, M. Notomi, S. Mitsugi, A. Shinya, T. Tanabe, and T. Watanabe, “Ultrahigh-Q photonic crystal nanocavities realized by the local width modulation of a line defect,” Appl. Phys. Lett. 88(4), 041112 (2006).
[CrossRef]

J. Bravo-Abad, E. P. Ippen, and M. Soljačić, “Ultrafast photodetection in an all-silicon chip enabled by two-photon absorption,” Appl. Phys. Lett. 94(24), 241103 (2009).
[CrossRef]

E. Kuramochi, H. Taniyama, T. Tanabe, A. Shinya, and M. Notomi, “Ultrahigh-Q two-dimensional photonic crystal slab nanocavities in very thin barriers,” Appl. Phys. Lett. 93(11), 111112 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Soref and B. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

L. Gu, W. Jiang, X. Chen, and R. T. Chen, “Physical mechanism of p-i-n-diode-based photonic crystal silicon electrooptic modulators for gigahertz operation,” IEEE J. Sel. Top. Quantum Electron. 14(4), 1132–1139 (2008).
[CrossRef]

J. Lightwave Technol. (1)

Nat. Photonics (2)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultra-small high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Nature (2)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[CrossRef] [PubMed]

V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature 431(7012), 1081–1084 (2004).
[CrossRef] [PubMed]

NTT Technical Review (1)

S. Itabashi, H. Fukuda, T. Tsuchizawa, T. Watanabe, and K. Yamada, “Silicon wire waveguides and silicon microphotonic devices,” NTT Technical Review 4, 48–56 (2006).

Opt. Express (5)

Opt. Lett. (2)

Phy Rev. E (1)

M. Slojačić, M. Ibanescu, S. Johnson, Y. Fink, and J. Joannopoulos, “Optimal bistable switching in nonlinear photonic crystals,” Phy Rev. E 66, 055601 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

T. Tanabe, M. Notomi, H. Taniyama, and E. Kuramochi, “Dynamic release of trapped light from an ultrahigh-Q nanocavity via adiabatic frequency tuning,” Phys. Rev. Lett. 102(4), 043907 (2009).
[CrossRef] [PubMed]

Proc. SPIE (1)

C. Gunn, A. Narasimha, B. Analui, Y. Liang, and T. Sleboda, “A 40Gb silicon photonics transceiver,” Proc. SPIE 6477, 64770N (2007).
[CrossRef]

Science (1)

H.-G. Park, S.-H. Kim, S.-H. Kwon, Y.-G. Ju, J.-K. Yang, J.-H. Baek, S.-B. Kim, and Y.-H. Lee, “Electrically driven single-cell photonic crystal laser,” Science 305(5689), 1444–1447 (2004).
[CrossRef] [PubMed]

Other (2)

T. Hodson, B. Miao, C. Chen, A. Sharkawy, and D. W. Prather, “Silicon based photonic crystal electro-optic modulator utilizing the plasma dispersion effect,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2007 Technical Digest (Optical Society of America, Washington, DC, 2007), CThG7.

K. Yamada, T. Tsuchizawa, T. Watanabe, H. Fukuda, H. Shinojima, and S. Itabashi, “Applications of low-loss silicon photonic wire waveguides with carrier injection structures,” in Proceeding of IEEE Conference on 4th Group IV Photonics, (Institute of Electrical and Electronics Engineers, New York, 2007), pp. 116–118.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fabrication process of a silicon PhC with a p-i-n structure. (1) Ion implantation. An electron beam resist is used to selectively implant ions. (2) Annealing for activation of implanted ions. (3) Fabrication of PhC by electron-beam lithography and dry etching. (4) Forming an aluminum contact by electron beam evaporation and lift-off. (5) Remove scarifying layer with BHF wet etching. The aluminum contact is protected with a resist. (6) Illustration of a fabricated air-bridged PhC with a p-i-n structure.

Fig. 2
Fig. 2

(a) Scanning electron microscope image of a fabricated PhC nanocavity with a p-i-n structure. This is an inline type width-modulated line defect PhC nanocavity. (b) Schematic illustration of the structure. The PhC nanocavity is fabricated by shifting the air-holes slightly outwards as shown in the picture. The lattice constant a, hole radius r, and slab thickness t, are 420, 216 and 204 nm, respectively. The distances between the two contacts and between the p + and n + ion-implanted regions are shown as w c and w i, respectively. The contact pad size is about 200×200 μm (not shown here). The input and output waveguides with a width of 1.05 3 a (W1.05) are optically connected with the cavity through barrier line defects that have a width of 0.98 3 a (W0.98). The length d of the barrier W0.98 line defect determines the coupling between the cavity and the input/output waveguides.

Fig. 3
Fig. 3

(a) Transmittance spectrum of a PhC nanocavity with a p-i-n structure when no voltage is applied. The structural parameters are described in the text. (b) Transmittance spectrum when a forward DC bias v is applied to the electrodes. The applied voltage is shown in the panel.

Fig. 4
Fig. 4

(a) Transmittance spectrum measured by sweeping a CW laser light when applying a square shaped pulse with an amplitude of ±v, a pulse width of 2 ns, and a pulse interval of 2 ns. The amplitude ±v is shown in the panel. (b) The same as (a) but with square pulses with a width of 1 ns and a pulse interval of 1 ns. The spectrum for 0 V is not shown because it is identical to that shown in panel (a).

Fig. 5
Fig. 5

(a) Output optical signal when a 2-ns square pulse (forward bias period) with a 2-ns interval (reverse bias period) is applied to n +. The black and red lines indicate input wavelengths of 1589.93 nm and1589.83 nm, respectively. (b) The same as (a) but the electrical signal has a width of 1 ns with a 1-ns interval. The input CW laser light for the black curve (on-to-off type modulation) is 1589.893 nm and 1589.872 nm for the red (off-to-on type modulation).

Fig. 6
Fig. 6

Output optical signal for on-to-off type modulation when a 2-ns square pulse with a 2-ns interval is applied to n +. The forward voltage is 1.5 V and the reverse voltage is −1.5 V for the red line and 0 V for the black line. Although we used a different sample for this measurement, the overall optical characteristics are similar to those of the sample used for Fig. 3-5. The sample design parameters are the same except that w i=5.8 μm.

Metrics