Abstract

We present evidence of cavity quantum electrodynamics from a sparse density of strongly quantum-confined Pb-chalcogenide nanocrystals (between 1 and 10) approaching single-dot levels on moderately high-Q mesoscopic silicon optical cavities. Operating at important near-infrared (1500-nm) wavelengths, large enhancements are observed from devices and strong modifications of the QD emission are achieved. Saturation spectroscopy of coupled QDs is observed at 77K, highlighting the modified nanocrystal dynamics for quantum information processing.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
    [CrossRef] [PubMed]
  2. G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
    [CrossRef]
  3. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
    [CrossRef] [PubMed]
  4. Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
    [CrossRef]
  5. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
    [CrossRef] [PubMed]
  6. S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
    [CrossRef]
  7. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
    [CrossRef] [PubMed]
  8. F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A 79(1), 013824 (2009).
    [CrossRef]
  9. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
    [CrossRef]
  10. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  11. J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [CrossRef] [PubMed]
  12. M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
    [CrossRef] [PubMed]
  13. Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77(3), 033201 (2008).
    [CrossRef]
  14. S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
    [CrossRef] [PubMed]
  15. C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82(23), 4032 (2003).
    [CrossRef]
  16. I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87(24), 241102 (2005).
    [CrossRef]
  17. R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90(11), 111117 (2007).
    [CrossRef]
  18. Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
    [CrossRef]
  19. R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
    [CrossRef]
  20. A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
    [CrossRef] [PubMed]
  21. S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
    [CrossRef] [PubMed]
  22. A. I. Akimov, “Al. L. Efros, A. A. Onushchenko, “Quantum size effect in semiconductor nanocrystals,” Solid State Commun. 56, 921 (1985).
  23. L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited excitonic state,” J. Chem. Phys. 80(9), 4403 (1984).
    [CrossRef]
  24. F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33(11), 773–780 (2000).
    [CrossRef] [PubMed]
  25. J. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals,” Nanotechology 16(2), 175–179 (2005).
    [CrossRef]
  26. S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111(20), 7302–7305 (2007).
    [CrossRef]
  27. L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
    [CrossRef] [PubMed]
  28. R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
    [CrossRef] [PubMed]
  29. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  30. T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
    [CrossRef]
  31. S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
    [CrossRef]
  32. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
    [CrossRef] [PubMed]
  33. S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
    [CrossRef] [PubMed]
  34. M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
    [CrossRef]
  35. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
    [CrossRef]
  36. C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
    [CrossRef]
  37. M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
    [CrossRef]
  38. D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
    [CrossRef] [PubMed]
  39. J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “Evidence for barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101(21), 217401 (2008).
    [CrossRef] [PubMed]
  40. J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008).
    [CrossRef] [PubMed]
  41. P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
    [CrossRef] [PubMed]
  42. X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004).
    [CrossRef]
  43. N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
    [CrossRef] [PubMed]
  44. G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
    [CrossRef]
  45. J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
    [CrossRef]
  46. J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
    [CrossRef] [PubMed]
  47. L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
    [CrossRef] [PubMed]
  48. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
    [CrossRef] [PubMed]
  49. L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90(10), 101913 (2007).
    [CrossRef]
  50. A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
    [CrossRef]
  51. G. T. Reed, and A. P. Knights, Silicon Photonics: An introduction (Wiley, 2004)
  52. A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: a resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
    [CrossRef]
  53. I. Kang and F. W. Wise, “Electron structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14(7), 1632 (1997).
    [CrossRef]
  54. G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
    [CrossRef]
  55. J. M. Gérard and B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999).
    [CrossRef]
  56. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
    [CrossRef] [PubMed]
  57. V. Fomenko and D. J. Nesbitt, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8(1), 287–293 (2008).
    [CrossRef] [PubMed]

2009 (5)

F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A 79(1), 013824 (2009).
[CrossRef]

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
[CrossRef] [PubMed]

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: a resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

2008 (9)

J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “Evidence for barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101(21), 217401 (2008).
[CrossRef] [PubMed]

J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008).
[CrossRef] [PubMed]

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[CrossRef] [PubMed]

V. Fomenko and D. J. Nesbitt, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8(1), 287–293 (2008).
[CrossRef] [PubMed]

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[CrossRef]

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77(3), 033201 (2008).
[CrossRef]

2007 (11)

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90(11), 111117 (2007).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111(20), 7302–7305 (2007).
[CrossRef]

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90(10), 101913 (2007).
[CrossRef]

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[CrossRef]

2006 (7)

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
[CrossRef] [PubMed]

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[CrossRef] [PubMed]

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[CrossRef] [PubMed]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef] [PubMed]

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

2005 (6)

R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
[CrossRef]

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87(24), 241102 (2005).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
[CrossRef] [PubMed]

J. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals,” Nanotechology 16(2), 175–179 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

2004 (4)

G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
[CrossRef]

X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004).
[CrossRef]

G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
[CrossRef]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

2003 (2)

C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82(23), 4032 (2003).
[CrossRef]

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[CrossRef]

2002 (3)

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

2001 (1)

C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
[CrossRef]

2000 (2)

F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33(11), 773–780 (2000).
[CrossRef] [PubMed]

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[CrossRef]

1997 (1)

1985 (1)

A. I. Akimov, “Al. L. Efros, A. A. Onushchenko, “Quantum size effect in semiconductor nanocrystals,” Solid State Commun. 56, 921 (1985).

1984 (1)

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited excitonic state,” J. Chem. Phys. 80(9), 4403 (1984).
[CrossRef]

1946 (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Abel, K. A.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
[CrossRef] [PubMed]

Aers, G. C.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

Akimov, A. I.

A. I. Akimov, “Al. L. Efros, A. A. Onushchenko, “Quantum size effect in semiconductor nanocrystals,” Solid State Commun. 56, 921 (1985).

Allan, G.

G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
[CrossRef]

G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
[CrossRef]

An, J. M.

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[CrossRef]

Andreani, L. C.

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

Arakawa, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Artemyev, M. V.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[CrossRef] [PubMed]

Asano, T.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Auffèves, A.

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: a resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Banin, U.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[CrossRef] [PubMed]

Belotti, M.

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

Bermel, P.

Bertolotti, J.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Betley, T. A.

C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
[CrossRef]

Bhattacharya, P.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

Bose, R.

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90(11), 111117 (2007).
[CrossRef]

R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
[CrossRef]

Bouwmeester, D.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Brokmann, X.

X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004).
[CrossRef]

Brus, L. E.

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited excitonic state,” J. Chem. Phys. 80(9), 4403 (1984).
[CrossRef]

Buil, S.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[CrossRef] [PubMed]

Buratto, S. K.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Burr, G. W.

Cademartiri, L.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[CrossRef] [PubMed]

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Calestani, G.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[CrossRef] [PubMed]

Carson, P. J.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Chatterjee, R.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90(11), 111117 (2007).
[CrossRef]

Chen, C. J.

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Chen, Y.

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

Chen, Y.-L.

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

Cheung, I. W.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

Childress, L.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

Clark, S. W.

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111(20), 7302–7305 (2007).
[CrossRef]

Coldren, L. A.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Colocci, M.

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

Dahan, M.

X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004).
[CrossRef]

Dalacu, D.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

Delerue, C.

G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
[CrossRef]

G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
[CrossRef]

Deotare, P. B.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Desbiolles, P.

X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004).
[CrossRef]

Doherty, A. C.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
[CrossRef] [PubMed]

Doyle, H.

C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
[CrossRef]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Du, H.

C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82(23), 4032 (2003).
[CrossRef]

Dubertret, B.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[CrossRef] [PubMed]

Dutt, M. V.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

Englund, D.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[CrossRef]

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87(24), 241102 (2005).
[CrossRef]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Faraon, A.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[CrossRef]

Farjadpour, A.

Fattal, D.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Fomenko, V.

V. Fomenko and D. J. Nesbitt, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8(1), 287–293 (2008).
[CrossRef] [PubMed]

Forchel, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Franceschetti, A.

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[CrossRef]

Frank, I. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Frederick, S.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

Fujita, M.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Fushman, I.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[CrossRef]

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87(24), 241102 (2005).
[CrossRef]

Gao, J.

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90(11), 111117 (2007).
[CrossRef]

Gaschler, W.

C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
[CrossRef]

Gayral, B.

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gérard, J. M.

Gérard, J.-M.

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: a resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

Gerth, K. A.

J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008).
[CrossRef] [PubMed]

Giaocobino, E.

X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004).
[CrossRef]

Gibbs, H. M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

Götzinger, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Guagliardi, A.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Guo, G.-C.

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

Gurioli, M.

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

Hahn, M. A.

C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82(23), 4032 (2003).
[CrossRef]

Han, Z.-F.

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

Harbold, J. M.

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111(20), 7302–7305 (2007).
[CrossRef]

Harniman, R. J.

R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
[CrossRef]

Heckenberg, N. R.

J. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals,” Nanotechology 16(2), 175–179 (2005).
[CrossRef]

Hemmer, P. R.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

Henini, M.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90(10), 101913 (2007).
[CrossRef]

Hennequin, B.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90(10), 101913 (2007).
[CrossRef]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Hermier, J. P.

X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004).
[CrossRef]

Hermier, J.-P.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[CrossRef] [PubMed]

Hines, M. A.

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[CrossRef]

Hofmann, C.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Hoshino, K.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Hsu, R.-C.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[CrossRef]

Hu, E.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Ibanescu, M.

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Intonti, F.

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

Jelezko, F.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

Jiang, L.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, J. C.

J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008).
[CrossRef] [PubMed]

Johnson, S. G.

Kagan, C. R.

C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
[CrossRef]

Kako, S.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

Kang, I.

Kazes, M.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[CrossRef] [PubMed]

Keldysh, L. V.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Khan, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Khitrova, G.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

Kira, M.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

Klimov, V. I.

J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “Evidence for barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101(21), 217401 (2008).
[CrossRef] [PubMed]

Kocaman, S.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Koch, S. W.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

Krauss, T. D.

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
[CrossRef] [PubMed]

C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82(23), 4032 (2003).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kuramochi, E.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Kwong, D. L.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Le Thomas, N.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[CrossRef] [PubMed]

Lipovskii, A.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[CrossRef]

Lipson, M.

C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82(23), 4032 (2003).
[CrossRef]

Löffler, A.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Loncar, M.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

Lukin, M. D.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

Mabuchi, H.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
[CrossRef] [PubMed]

Mahler, B.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[CrossRef] [PubMed]

Mason, M. D.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Maze, J.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

McCutcheon, M. W.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

McMillan, J. F.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

McMillan, R. J. F.

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Messin, G.

X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004).
[CrossRef]

Mi, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

Michler, P.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Migliori, A.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[CrossRef] [PubMed]

Montanari, E.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[CrossRef] [PubMed]

Murphy, J. E.

J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008).
[CrossRef] [PubMed]

Murray, C. B.

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
[CrossRef] [PubMed]

C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
[CrossRef]

Nesbitt, D. J.

V. Fomenko and D. J. Nesbitt, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8(1), 287–293 (2008).
[CrossRef] [PubMed]

Nguyen, P. T.

R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
[CrossRef]

Noda, S.

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

Notomi, M.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Nozik, A. J.

J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008).
[CrossRef] [PubMed]

Olkhovets, A.

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[CrossRef]

Osgood, R. M.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Ozin, G. A.

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[CrossRef] [PubMed]

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Painter, O.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

Panoiu, N. C.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Patane, A.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90(10), 101913 (2007).
[CrossRef]

Pattantyus-Abraham, A. G.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
[CrossRef] [PubMed]

Pelton, M.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Peterson, J. J.

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
[CrossRef] [PubMed]

Petroff, P.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[CrossRef]

Petroff, P. M.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Pietryga, J. M.

J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “Evidence for barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101(21), 217401 (2008).
[CrossRef] [PubMed]

Plant, J.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Poitras, C. B.

C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82(23), 4032 (2003).
[CrossRef]

Poizat, J.-P.

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: a resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

Poole, P. J.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qiao, H.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
[CrossRef] [PubMed]

Quelin, X.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[CrossRef] [PubMed]

Rakher, M. T.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Riboli, F.

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

Rickey, K. M.

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

Rieger, G. W.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

Rodriguez, A.

Roundy, D.

Rubinsztein-Dunlop, H.

J. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals,” Nanotechology 16(2), 175–179 (2005).
[CrossRef]

Santori, C.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Sapienza, R.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Schaller, R. D.

J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “Evidence for barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101(21), 217401 (2008).
[CrossRef] [PubMed]

Scherer, A.

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

Scholes, G. D.

J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008).
[CrossRef] [PubMed]

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[CrossRef]

Schöps, O.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[CrossRef] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Shan, J.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
[CrossRef] [PubMed]

Shen, Y.

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77(3), 033201 (2008).
[CrossRef]

Shinya, A.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Solomon, G. S.

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Song, Q.

J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008).
[CrossRef] [PubMed]

Spinicelli, P.

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[CrossRef] [PubMed]

Srinivasan, K.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

Stoltz, N.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[CrossRef]

Stoltz, N. G.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Strauf, S.

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Strouse, G. F.

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Sun, F. W.

F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A 79(1), 013824 (2009).
[CrossRef]

Sun, S.

C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
[CrossRef]

Sweeney, T. M.

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77(3), 033201 (2008).
[CrossRef]

Talapin, D. V.

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
[CrossRef] [PubMed]

R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
[CrossRef]

Tanabe, T.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Taniyama, H.

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

Thomas, N. R.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90(10), 101913 (2007).
[CrossRef]

Thomsen, E.

J. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals,” Nanotechology 16(2), 175–179 (2005).
[CrossRef]

Togan, E.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

Turyanska, L.

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90(10), 101913 (2007).
[CrossRef]

van Veggel, F. C. J. M.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
[CrossRef] [PubMed]

Vignolini, S.

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

von Freymann, G.

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Vuckovic, J.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[CrossRef]

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87(24), 241102 (2005).
[CrossRef]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Wang, H.

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77(3), 033201 (2008).
[CrossRef]

Wang, T.-S.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
[CrossRef] [PubMed]

Warner, J.

J. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals,” Nanotechology 16(2), 175–179 (2005).
[CrossRef]

Watt, A. R.

J. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals,” Nanotechology 16(2), 175–179 (2005).
[CrossRef]

Whitehead, M.

J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “Evidence for barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101(21), 217401 (2008).
[CrossRef] [PubMed]

Wiersma, D. S.

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

Williams, R. L.

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Wise, F. W.

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111(20), 7302–7305 (2007).
[CrossRef]

F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33(11), 773–780 (2000).
[CrossRef] [PubMed]

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[CrossRef]

I. Kang and F. W. Wise, “Electron structure and optical properties of PbS and PbSe quantum dots,” J. Opt. Soc. Am. B 14(7), 1632 (1997).
[CrossRef]

Woggon, U.

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[CrossRef] [PubMed]

Wong, C. W.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A 79(1), 013824 (2009).
[CrossRef]

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90(11), 111117 (2007).
[CrossRef]

R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
[CrossRef]

Wu, Z.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

Xiao, Y.-F.

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

Xu, J.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

Yamamoto, Y.

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

Yang, X.

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90(11), 111117 (2007).
[CrossRef]

R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
[CrossRef]

Young, J. F.

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
[CrossRef] [PubMed]

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

Yu, M. B.

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

Zhang, B.

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

Zhu, T.

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

Zhuravlev, K. K.

J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “Evidence for barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101(21), 217401 (2008).
[CrossRef] [PubMed]

Zibrov, A. S.

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

Zou, X.-B.

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

Zunger, A.

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[CrossRef]

Acc. Chem. Res. (1)

F. W. Wise, “Lead salt quantum dots: the limit of strong quantum confinement,” Acc. Chem. Res. 33(11), 773–780 (2000).
[CrossRef] [PubMed]

Adv. Mater. (1)

M. A. Hines and G. D. Scholes, “Colloidal PbS nanocrystals with size-tunable near-infrared emission: observation of post-synthesis self-narrowing of the particle size distribution,” Adv. Mater. 15(21), 1844–1849 (2003).
[CrossRef]

Appl. Phys. Lett. (7)

M. W. McCutcheon, G. W. Rieger, I. W. Cheung, J. F. Young, D. Dalacu, S. Frederick, P. J. Poole, G. C. Aers, and R. L. Williams, “Resonant scattering and second-harmonic spectroscopy of planar photonic crystal nanocavities,” Appl. Phys. Lett. 87(22), 221110 (2005).
[CrossRef]

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009).
[CrossRef]

C. B. Poitras, M. Lipson, M. A. Hahn, H. Du, and T. D. Krauss, “Photoluminescence enhancement of colloidal quantum dots embedded in a monolithic microcavity,” Appl. Phys. Lett. 82(23), 4032 (2003).
[CrossRef]

I. Fushman, D. Englund, and J. Vučković, “Coupling of PbS quantum dots to photonic crystal cavities at room temperature,” Appl. Phys. Lett. 87(24), 241102 (2005).
[CrossRef]

R. Bose, X. Yang, R. Chatterjee, J. Gao, and C. W. Wong, “Weak coupling interactions of colloidal lead sulphide nanocrystals with silicon photonic crystal nanocavities near 1.55 μm at room temperature,” Appl. Phys. Lett. 90(11), 111117 (2007).
[CrossRef]

Z. Wu, Z. Mi, P. Bhattacharya, T. Zhu, and J. Xu, “Enhanced spontaneous emission at 1.55 μm from colloidal PbSe quantum dots in a Si photonic crystal microcavity,” Appl. Phys. Lett. 90(17), 171105 (2007).
[CrossRef]

L. Turyanska, A. Patane, M. Henini, B. Hennequin, and N. R. Thomas, “Temperature dependence of the photoluminescence emission from thiol-capped PbS quantum dots,” Appl. Phys. Lett. 90(10), 101913 (2007).
[CrossRef]

IBM J. Res. Dev. (1)

C. B. Murray, S. Sun, W. Gaschler, H. Doyle, T. A. Betley, and C. R. Kagan, “Colloidal synthesis of nanocrystals and nanocrystal superlattices,” IBM J. Res. Dev. 45, 47 (2001).
[CrossRef]

J. Am. Chem. Soc. (1)

L. Cademartiri, E. Montanari, G. Calestani, A. Migliori, A. Guagliardi, and G. A. Ozin, “Size-dependent extinction coefficients of PbS quantum dots,” J. Am. Chem. Soc. 128(31), 10337–10346 (2006).
[CrossRef] [PubMed]

J. Chem. Phys. (1)

L. E. Brus, “Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited excitonic state,” J. Chem. Phys. 80(9), 4403 (1984).
[CrossRef]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

L. Cademartiri, J. Bertolotti, R. Sapienza, D. S. Wiersma, G. von Freymann, and G. A. Ozin, “Multigram scale, solventless, and diffusion-controlled route to highly monodisperse PbS nanocrystals,” J. Phys. Chem. B 110(2), 671–673 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

S. W. Clark, J. M. Harbold, and F. W. Wise, “Resonant energy transfer in PbS quantum dots,” J. Phys. Chem. C 111(20), 7302–7305 (2007).
[CrossRef]

N. J. Phys. (2)

Y.-F. Xiao, J. Gao, X.-B. Zou, J. F. McMillan, X. Yang, Y.-L. Chen, Z.-F. Han, G.-C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” N. J. Phys. 10(12), 123013 (2008).
[CrossRef]

X. Brokmann, G. Messin, P. Desbiolles, E. Giaocobino, M. Dahan, and J. P. Hermier, “Colloidal CdSe/ZnS quantum dots as single-photon sources,” N. J. Phys. 6, 99 (2004).
[CrossRef]

Nano Lett. (7)

N. Le Thomas, U. Woggon, O. Schöps, M. V. Artemyev, M. Kazes, and U. Banin, “Cavity QED with semiconductor nanocrystals,” Nano Lett. 6(3), 557–561 (2006).
[CrossRef] [PubMed]

J. C. Johnson, K. A. Gerth, Q. Song, J. E. Murphy, A. J. Nozik, and G. D. Scholes, “Ultrafast exciton fine structure relaxation dynamics in lead chalcogenide nanocrystals,” Nano Lett. 8(5), 1374–1381 (2008).
[CrossRef] [PubMed]

J. M. An, A. Franceschetti, and A. Zunger, “The excitonic exchange splitting and radiative lifetime in PbSe quantum dots,” Nano Lett. 7(7), 2129–2135 (2007).
[CrossRef]

J. J. Peterson and T. D. Krauss, “Fluorescence spectroscopy of single lead sulfide quantum dots,” Nano Lett. 6(3), 510–514 (2006).
[CrossRef] [PubMed]

V. Fomenko and D. J. Nesbitt, “Solution control of radiative and nonradiative lifetimes: a novel contribution to quantum dot blinking suppression,” Nano Lett. 8(1), 287–293 (2008).
[CrossRef] [PubMed]

R. Bose, R. J. F. McMillan, J. Gao, C. J. Chen, D. V. Talapin, C. B. Murray, K. M. Rickey, and C. W. Wong, “Temperature-tuning of near-infrared monodisperse quantum dots at 1.5 μm for controllable Förster energy transfer,” Nano Lett. 8(7), 2006–2011 (2008).
[CrossRef] [PubMed]

A. G. Pattantyus-Abraham, H. Qiao, J. Shan, K. A. Abel, T.-S. Wang, F. C. J. M. van Veggel, and J. F. Young, “Site-selective optical coupling of PbSe nanocrystals to Si-based photonic crystal microcavities,” Nano Lett. 9(8), 2849–2854 (2009).
[CrossRef] [PubMed]

Nanotechology (1)

J. Warner, E. Thomsen, A. R. Watt, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Time-resolved photoluminescence spectroscopy of ligand-capped PbS nanocrystals,” Nanotechology 16(2), 175–179 (2005).
[CrossRef]

Nat. Mater. (2)

S. Kako, C. Santori, K. Hoshino, S. Götzinger, Y. Yamamoto, and Y. Arakawa, “A gallium nitride single-photon source operating at 200 K,” Nat. Mater. 5(11), 887–892 (2006).
[CrossRef] [PubMed]

B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, and B. Dubertret, “Towards non-blinking colloidal quantum dots,” Nat. Mater. 7(8), 659–664 (2008).
[CrossRef] [PubMed]

Nat. Photonics (3)

T. Tanabe, M. Notomi, E. Kuramochi, A. Shinya, and H. Taniyama, “Trapping and delaying photons for one nanosecond in an ultrasmall high-Q photonic-crystal nanocavity,” Nat. Photonics 1(1), 49–52 (2007).
[CrossRef]

S. Noda, M. Fujita, and T. Asano, “Spontaneous-emission control by photonic crystals and nanocavities,” Nat. Photonics 1(8), 449–458 (2007).
[CrossRef]

S. Strauf, N. G. Stoltz, M. T. Rakher, L. A. Coldren, P. M. Petroff, and D. Bouwmeester, “High-frequency single-photon source with polarization control,” Nat. Photonics 1(12), 704–708 (2007).
[CrossRef]

Nat. Phys. (2)

G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch, and A. Scherer, “Vacuum Rabi splitting in semiconductors,” Nat. Phys. 2(2), 81–90 (2006).
[CrossRef]

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vučković, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008).
[CrossRef]

Nature (5)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sęk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

C. Santori, D. Fattal, J. Vucković, G. S. Solomon, and Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002).
[CrossRef] [PubMed]

P. Michler, A. Imamoğlu, M. D. Mason, P. J. Carson, G. F. Strouse, and S. K. Buratto, “Quantum correlation among photons from a single quantum dot at room temperature,” Nature 406(6799), 968–970 (2000).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. A (2)

F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A 79(1), 013824 (2009).
[CrossRef]

A. Auffèves, J.-M. Gérard, and J.-P. Poizat, “Pure emitter dephasing: a resource for advanced solid-state single-photon sources,” Phys. Rev. A 79(5), 053838 (2009).
[CrossRef]

Phys. Rev. B (3)

G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
[CrossRef]

G. Allan and C. Delerue, “Confinement effects in PbSe quantum wells and nanocrystals,” Phys. Rev. B 70(24), 245321 (2004).
[CrossRef]

Y. Shen, T. M. Sweeney, and H. Wang, “Zero-phonon linewidth of single nitrogen vacancy centers in diamond nanocrystals,” Phys. Rev. B 77(3), 033201 (2008).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. Vignolini, F. Riboli, F. Intonti, M. Belotti, M. Gurioli, Y. Chen, M. Colocci, L. C. Andreani, and D. S. Wiersma, “Local nanofluidic light sources in silicon photonic crystal microcavities,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 78(4), 045603 (2008).
[CrossRef] [PubMed]

Phys. Rev. Lett. (4)

S. Kocaman, R. Chatterjee, N. C. Panoiu, J. F. McMillan, M. B. Yu, R. M. Osgood, D. L. Kwong, and C. W. Wong, “Observations of zero-order bandgaps in negative-index photonic crystal superlattices at the near-infrared,” Phys. Rev. Lett. 102, 203905 (2009).
[CrossRef] [PubMed]

J. M. Pietryga, K. K. Zhuravlev, M. Whitehead, V. I. Klimov, and R. D. Schaller, “Evidence for barrierless auger recombination in PbSe nanocrystals: a pressure-dependent study of transient optical absorption,” Phys. Rev. Lett. 101(21), 217401 (2008).
[CrossRef] [PubMed]

M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, and Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002).
[CrossRef] [PubMed]

A. Olkhovets, R.-C. Hsu, A. Lipovskii, and F. W. Wise, “Size-dependent variation of the energy gap in lead-salt quantum dots,” Phys. Rev. Lett. 81(16), 3539–3542 (1998).
[CrossRef]

Proc. SPIE (1)

R. Bose, D. V. Talapin, X. Yang, R. J. Harniman, P. T. Nguyen, and C. W. Wong, “Interaction of infilitrated colloidal PbS nanocrystals with high Q/V silicon photonic bandgap nanocavities for near-infrared enhanced spontaneous emissions,” Proc. SPIE 6005, 600509 (2005).
[CrossRef]

Science (4)

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002).
[CrossRef] [PubMed]

M. V. Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316(5829), 1312–1316 (2007).
[CrossRef] [PubMed]

D. V. Talapin and C. B. Murray, “PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors,” Science 310(5745), 86–89 (2005).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoğlu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Solid State Commun. (1)

A. I. Akimov, “Al. L. Efros, A. A. Onushchenko, “Quantum size effect in semiconductor nanocrystals,” Solid State Commun. 56, 921 (1985).

Other (1)

G. T. Reed, and A. P. Knights, Silicon Photonics: An introduction (Wiley, 2004)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Scanning electron micrograph (SEM) of a multistep heterostructure cavity with few quantum dots at the cavity, on the device surface. (b) Schematic of the mode-gap cavity confinement. The white regions show photonic bandgaps for in-plane wavevectors. The curve represents 1-D field intensity (| E x |2) computed using 3D FDTD (c) Top- and side views of the cavity field-mode (| E x |2) computed with the 3D FDTD method. r = 0.3024a1 , where the other definitions are the same as in Fig. a.

Fig. 2
Fig. 2

(a) SEM of less than 50 dots in the heterostructure cavity region. Circles are used to highlight regions of random QD localization after spin-coating. Scale bar: 500 nm (b) | E x|2 for the calculated field profile (r = 124 nm) at silicon slab surface. (c) Schematic of the vertical pump/collection experiment for QD coupling measurements as well as the cross-polarization measurements with the blue region being the region of the confined cavity mode. (d) PL spectra of dots at the cavity region for design radii of 130, 124- 118 nm dots (left to right, blue), at room temperature. The device shown in (a) corresponds to the second mode. Additionally a high resolution scan (1 nm) of the QD photoluminescence (gray) is shown for a large QD density at a cavity region for a device with design radius of 124 nm. The green curve is the passive cross-polarization characterization for the cavity shown at 1560 nm.

Fig. 3
Fig. 3

PL spectra of dots at cavity (r = 124 nm) at 4, 77, 160, 220 and 295 K, showing the cavity mode being decorated at all temperatures. Gaussian fits to the QD PL spectrum, as well as Lorentzian fits to the cavity line are also shown.

Fig. 4
Fig. 4

(a). SEM of typical QD coverage for the results in Fig. 3, showing single QDs at concentrations of <1000 per µm2. Scale bar: 100 nm (b) QD intensity contrast (Ic) over the background (IBG) as a function of temperature.

Fig. 5
Fig. 5

(a). SEM of approximately 50 QD per µm2 at the cavity mode (scale bar: 500 nm) for the device used for power-saturation measurements (different from device shown in Fig. 3). (b) PL spectra of QDs at the cavity showing the cavity mode with an intensity contrast of >15 over the background. (c) Power saturation measurements for dots at 1505 and 1515 nm showing a delayed onset of saturation (shown by the arrows) for dots at the peak of emission. This is performed at 77K. The value of Psat is estimated around 5 mW.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

F P = 3 4 π 2 ( λ n ) 3 ( Q V )

Metrics