Abstract

Arrays of GaAs microring optical resonators with embedded InGaAs quantum dots (QDs) are placed on top of Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric actuators, which allow the microcavities to be reversibly “stretched” or “squeezed” by applying relatively large biaxial stresses at low temperatures. The emission energy of both QDs and optical modes red- or blue- shift depending on the strain sign, with the QD emission shifting more rapidly than the optical mode with applied strain. The QD energy shifts are used to estimate the strain in the structures based on linear deformation potential theory and the finite element method. The shift of the modes is attributed to both the physical deformation and the change in refractive index due to the photoelastic effect. Remarkably, excitonic emissions from different QDs are observed to shift at different rates, implying that this technique can be used to bring spatially separated excitons into resonance.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
    [CrossRef]
  2. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
    [CrossRef] [PubMed]
  3. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
    [CrossRef] [PubMed]
  4. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
    [CrossRef] [PubMed]
  5. P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000).
    [CrossRef]
  6. E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett . 95, 067401- (2005).
    [CrossRef] [PubMed]
  7. K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
    [CrossRef] [PubMed]
  8. J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot,” Appl. Phys. Lett. 93(15), 151109 (2008).
    [CrossRef]
  9. P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
    [CrossRef] [PubMed]
  10. I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
    [CrossRef] [PubMed]
  11. A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
    [CrossRef] [PubMed]
  12. A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
    [CrossRef] [PubMed]
  13. K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
    [CrossRef]
  14. X. D. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett . 91, 161114–1-3 (2007).
    [CrossRef]
  15. A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
    [CrossRef]
  16. K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
    [CrossRef]
  17. A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
    [CrossRef]
  18. A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007).
    [CrossRef]
  19. S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
    [CrossRef]
  20. A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007).
    [CrossRef]
  21. F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdre, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78,041401(R) (2008).
    [CrossRef]
  22. S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008).
    [CrossRef]
  23. C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006–15012 (2008).
    [CrossRef] [PubMed]
  24. A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
    [CrossRef]
  25. C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3-PMN-PT(001) (A=Sr,Ca),” Phys. Rev. B 75(5), 054408 (2007).
    [CrossRef]
  26. S. E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82(4), 1804–1811 (1997).
    [CrossRef]
  27. J. P. Han and W. W. Cao, “Electric field effects on the phase transitions in [001]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with compositions near the morphotropic phase boundary,” Phys. Rev. B 68(13), 134102 (2003).
    [CrossRef]
  28. S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
    [CrossRef]
  29. M. R. Brozel, and G. E. Stillman, eds., Properties of Gallium Arsenide (INSPEC: London, 1996)
  30. M. Fukuhara and A. Sampei, “Low-temperature elastic moduli and internal dilational and shear friction of polymethyl methacrylate,” J. Polym. Sci. B 33(12), 1847–1850 (1995).
    [CrossRef]
  31. H. J. McSkimin, “Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica,” J. Appl. Phys. 24(8), 988–997 (1953).
    [CrossRef]
  32. C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
    [CrossRef]
  33. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
    [CrossRef] [PubMed]
  34. R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
    [CrossRef]
  35. M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003).
    [CrossRef]
  36. A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
    [CrossRef]

2009 (1)

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

2008 (6)

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot,” Appl. Phys. Lett. 93(15), 151109 (2008).
[CrossRef]

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008).
[CrossRef]

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006–15012 (2008).
[CrossRef] [PubMed]

2007 (5)

C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3-PMN-PT(001) (A=Sr,Ca),” Phys. Rev. B 75(5), 054408 (2007).
[CrossRef]

A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007).
[CrossRef]

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007).
[CrossRef]

2006 (3)

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
[CrossRef]

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

2005 (3)

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

2004 (3)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

2003 (2)

M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003).
[CrossRef]

J. P. Han and W. W. Cao, “Electric field effects on the phase transitions in [001]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with compositions near the morphotropic phase boundary,” Phys. Rev. B 68(13), 134102 (2003).
[CrossRef]

2002 (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[CrossRef] [PubMed]

2000 (2)

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

1999 (1)

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

1998 (1)

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

1997 (1)

S. E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82(4), 1804–1811 (1997).
[CrossRef]

1995 (1)

M. Fukuhara and A. Sampei, “Low-temperature elastic moduli and internal dilational and shear friction of polymethyl methacrylate,” J. Polym. Sci. B 33(12), 1847–1850 (1995).
[CrossRef]

1967 (1)

R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[CrossRef]

1953 (1)

H. J. McSkimin, “Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica,” J. Appl. Phys. 24(8), 988–997 (1953).
[CrossRef]

Amann, M.-C.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Angele, J.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Atatüre, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Awschalom, D. D.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Barbastathis, G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Becher, C.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000).
[CrossRef]

Benyoucef, M.

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008).
[CrossRef]

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Bilani, O.

C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3-PMN-PT(001) (A=Sr,Ca),” Phys. Rev. B 75(5), 054408 (2007).
[CrossRef]

Bloch, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Boehm, G.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Brunner, K.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot,” Appl. Phys. Lett. 93(15), 151109 (2008).
[CrossRef]

Bulla, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Burkard, G.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Cao, W. W.

J. P. Han and W. W. Cao, “Electric field effects on the phase transitions in [001]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with compositions near the morphotropic phase boundary,” Phys. Rev. B 68(13), 134102 (2003).
[CrossRef]

Cavallo, F.

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Coric, E.

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Costard, E.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

De Poortere, E. P.

M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003).
[CrossRef]

Deneke, Ch.

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Deppe, D. G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Di Vincenzo, D. P.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Dixon, R. W.

R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[CrossRef]

Dörr, K.

C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3-PMN-PT(001) (A=Sr,Ca),” Phys. Rev. B 75(5), 054408 (2007).
[CrossRef]

Dousse, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Dreiser, J.

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Eggleton, B. J.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Englund, D.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007).
[CrossRef]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Faraon, A.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007).
[CrossRef]

Fink, Y.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[CrossRef] [PubMed]

Finley, J. J.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Forchel, A.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot,” Appl. Phys. Lett. 93(15), 151109 (2008).
[CrossRef]

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006–15012 (2008).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Fukuhara, M.

M. Fukuhara and A. Sampei, “Low-temperature elastic moduli and internal dilational and shear friction of polymethyl methacrylate,” J. Polym. Sci. B 33(12), 1847–1850 (1995).
[CrossRef]

Fushman, I.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007).
[CrossRef]

Gayral, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Gérard, J. M.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Gibbs, H. M.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Han, J. P.

J. P. Han and W. W. Cao, “Electric field effects on the phase transitions in [001]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with compositions near the morphotropic phase boundary,” Phys. Rev. B 68(13), 134102 (2003).
[CrossRef]

Hauke, N.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Heindel, T.

Hendrickson, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

Hofbauer, F.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Höfling, S.

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Högele, A.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
[CrossRef]

Högerle, C.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

Horton, F.

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Hu, E.

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000).
[CrossRef]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Ibanescu, M.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[CrossRef] [PubMed]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000).
[CrossRef]

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Ippen, E. P.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Jeon, Y.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Joannopoulos, J. D.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[CrossRef] [PubMed]

Johnson, S. G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[CrossRef] [PubMed]

Kaniber, M.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Karrai, K.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
[CrossRef]

M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003).
[CrossRef]

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Khitrova, G.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Kim, S.-G.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Kimerling, L. C.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Kiravittaya, S.

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008).
[CrossRef]

A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007).
[CrossRef]

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Kiraz, A.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Kistner, C.

Kroner, M.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Lanco, L.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Laucht, A.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Legrand, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Lemaître, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Lodahl, P.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Löffler, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Loss, D.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Luther-Davies, B.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Mahapatra, S.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot,” Appl. Phys. Lett. 93(15), 151109 (2008).
[CrossRef]

Manus, S.

M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003).
[CrossRef]

McSkimin, H. J.

H. J. McSkimin, “Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica,” J. Appl. Phys. 24(8), 988–997 (1953).
[CrossRef]

Mendach, S.

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008).
[CrossRef]

Mendach, W.

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Merdzhanova, T.

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Miard, A.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Michler, P.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Mosor, S.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

Painter, O.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

Park, S. E.

S. E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82(4), 1804–1811 (1997).
[CrossRef]

Petroff, P.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

Petroff, P. M.

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Qi, M.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Rahimi-Iman, A.

Rakich, P. T.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Rastelli, A.

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008).
[CrossRef]

A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007).
[CrossRef]

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

C. Kistner, T. Heindel, C. Schneider, A. Rahimi-Iman, S. Reitzenstein, S. Höfling, and A. Forchel, “Demonstration of strong coupling via electro-optical tuning in high-quality QD-micropillar systems,” Opt. Express 16(19), 15006–15012 (2008).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Renner, J.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot,” Appl. Phys. Lett. 93(15), 151109 (2008).
[CrossRef]

Richards, B. C.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

Roblin, C.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Rödel, J.

C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3-PMN-PT(001) (A=Sr,Ca),” Phys. Rev. B 75(5), 054408 (2007).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Sagnes, I.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Sampei, A.

M. Fukuhara and A. Sampei, “Low-temperature elastic moduli and internal dilational and shear friction of polymethyl methacrylate,” J. Polym. Sci. B 33(12), 1847–1850 (1995).
[CrossRef]

Scherer, A.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Schmidt, O. G.

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008).
[CrossRef]

A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007).
[CrossRef]

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Schneider, C.

Schoenfeld, W. V.

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Schultz, L.

C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3-PMN-PT(001) (A=Sr,Ca),” Phys. Rev. B 75(5), 054408 (2007).
[CrossRef]

Seidl, S.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
[CrossRef]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

Semenova, E.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Senellart, P.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Sermage, B.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Shayegan, M.

M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003).
[CrossRef]

Shchekin, O. B.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Sherwin, M.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Shkolnikov, Y. P.

M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003).
[CrossRef]

Shrout, T. R.

S. E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82(4), 1804–1811 (1997).
[CrossRef]

Skorobogatiy, M. A.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[CrossRef] [PubMed]

Small, A.

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

Smith, H. I.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Songmuang, R.

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008).
[CrossRef]

Srinivasan, K.

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

Stobbe, S.

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Stoltz, N.

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007).
[CrossRef]

Suffczynski, J.

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Sweet, J.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

Tamboli, A.

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

Thiele, C.

C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3-PMN-PT(001) (A=Sr,Ca),” Phys. Rev. B 75(5), 054408 (2007).
[CrossRef]

Thierry-Mieg, V.

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

Ulhaq, A.

A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007).
[CrossRef]

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Vakili, K.

M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003).
[CrossRef]

Vuckovic, J.

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007).
[CrossRef]

Wang, L.

A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007).
[CrossRef]

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Warburton, R. J.

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
[CrossRef]

Weisberg, O.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[CrossRef] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Winter, W.

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Wong, C. W.

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

Worschech, L.

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot,” Appl. Phys. Lett. 93(15), 151109 (2008).
[CrossRef]

Yoshie, T.

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

Zhang, L.

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000).
[CrossRef]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

Zrenner, A.

A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007).
[CrossRef]

Appl. Phys. Lett. (11)

P. Michler, A. Kiraz, L. Zhang, C. Becher, E. Hu, and A. Imamoğlu, “Laser emission from quantum dots in microdisk structures,” Appl. Phys. Lett. 77(2), 184–186 (2000).
[CrossRef]

J. Renner, L. Worschech, A. Forchel, S. Mahapatra, and K. Brunner, “Glass supported ZnSe microring strongly coupled to a single CdSe quantum dot,” Appl. Phys. Lett. 93(15), 151109 (2008).
[CrossRef]

K. Hennessy, A. Badolato, A. Tamboli, P. M. Petroff, E. Hu, M. Atatüre, J. Dreiser, and A. Imamoğlu, “Tuning photonic crystal nanocavity modes by wet chemical digital etching,” Appl. Phys. Lett. 87(2), 021108 (2005).
[CrossRef]

A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. M. Petroff, “Local quantum dot tuning on photonic crystal chips,” Appl. Phys. Lett. 90(21), 213110 (2007).
[CrossRef]

S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, “Scanning a photonic crystal slab nanocavity by condensation of xenon,” Appl. Phys. Lett. 87(14), 141105 (2005).
[CrossRef]

A. Rastelli, A. Ulhaq, S. Kiravittaya, L. Wang, A. Zrenner, and O. G. Schmidt, “In situ laser microprocessing of single self-assembled quantum dots and optical microcavities,” Appl. Phys. Lett. 90(7), 073120 (2007).
[CrossRef]

A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, “Local tuning of photonic crystal cavities using chalcogenide glasses,” Appl. Phys. Lett. 92(4), 043123 (2008).
[CrossRef]

K. Hennessy, C. Högerle, E. Hu, A. Badolato, and A. Imamoğlu, “Tuning photonic nanocavities by atomic force microscope nano-oxidation,” Appl. Phys. Lett. 89(4), 041118 (2006).
[CrossRef]

S. Seidl, M. Kroner, A. Högele, K. Karrai, R. J. Warburton, A. Badolato, and P. M. Petroff, “Effect of uniaxial stress on exitons in a self-assembled quantum dot,” Appl. Phys. Lett. 88(20), 203113 (2006).
[CrossRef]

C. W. Wong, P. T. Rakich, S. G. Johnson, M. Qi, H. I. Smith, E. P. Ippen, L. C. Kimerling, Y. Jeon, G. Barbastathis, and S.-G. Kim, “Strain-tunable silicon photonic band gap microcavities in optical waveguides,” Appl. Phys. Lett. 84(8), 1242–1244 (2004).
[CrossRef]

M. Shayegan, K. Karrai, Y. P. Shkolnikov, K. Vakili, E. P. De Poortere, and S. Manus, “Low temperature in-situ tunable, uniaxial stress measurements in semiconductors using a piezoelectric actuator,” Appl. Phys. Lett. 83(25), 5235–5237 (2003).
[CrossRef]

J. Appl. Phys. (3)

H. J. McSkimin, “Measurement of elastic constants at low temperatures by means of ultrasonic waves–data for silicon and germanium single crystals, and for fused silica,” J. Appl. Phys. 24(8), 988–997 (1953).
[CrossRef]

R. W. Dixon, “Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners,” J. Appl. Phys. 38(13), 5149–5153 (1967).
[CrossRef]

S. E. Park and T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. 82(4), 1804–1811 (1997).
[CrossRef]

J. Polym. Sci. B (1)

M. Fukuhara and A. Sampei, “Low-temperature elastic moduli and internal dilational and shear friction of polymethyl methacrylate,” J. Polym. Sci. B 33(12), 1847–1850 (1995).
[CrossRef]

N. J. Phys. (1)

A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Boehm, P. Lodahl, M.-C. Amann, and J. J. Finley, “Electrical control of spontaneous emission and strong coupling for a single quantum dot,” N. J. Phys. 11(2), 023034 (2009).
[CrossRef]

Nature (4)

K. Srinivasan and O. Painter, “Linear and nonlinear optical spectroscopy of a strongly coupled microdisk-quantum dot system,” Nature 450(7171), 862–865 (2007).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature 432(7014), 197–200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature 432(7014), 200–203 (2004).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. B (3)

S. Mendach, S. Kiravittaya, A. Rastelli, M. Benyoucef, R. Songmuang, and O. G. Schmidt, “Bidirectional wavelength tuning of individual semiconductor quantum dots in a flexible rolled-up microtube,” Phys. Rev. B 78(3), 035317 (2008).
[CrossRef]

J. P. Han and W. W. Cao, “Electric field effects on the phase transitions in [001]-oriented (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals with compositions near the morphotropic phase boundary,” Phys. Rev. B 68(13), 134102 (2003).
[CrossRef]

C. Thiele, K. Dörr, O. Bilani, J. Rödel, and L. Schultz, “Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3-PMN-PT(001) (A=Sr,Ca),” Phys. Rev. B 75(5), 054408 (2007).
[CrossRef]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

A. Imamoğlu, D. D. Awschalom, G. Burkard, D. P. Di Vincenzo, D. Loss, M. Sherwin, and A. Small, “Quantum Information processing using quantum dot spins and cavity QED,” Phys. Rev. Lett. 83(20), 4204–4207 (1999).
[CrossRef]

J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity,” Phys. Rev. Lett. 81(5), 1110–1113 (1998).
[CrossRef]

A. Dousse, L. Lanco, J. Suffczyński, E. Semenova, A. Miard, A. Lemaître, I. Sagnes, C. Roblin, J. Bloch, and P. Senellart, “Controlled light-matter coupling for a single quantum dot embedded in a pillar microcavity using far-field optical lithography,” Phys. Rev. Lett. 101(26), 267404 (2008).
[CrossRef] [PubMed]

Phys. Status Solidi (1)

A. Rastelli, A. Ulhaq, Ch. Deneke, L. Wang, M. Benyoucef, E. Coric, W. Winter, W. Mendach, F. Horton, F. Cavallo, T. Merdzhanova, S. Kiravittaya, and O. G. Schmidt, “Fabrication and characterization of microdisk resonators with In(Ga)As-GaAs quantum dots,” Phys. Status Solidi 3(11c), 3641–3645 (2006).
[CrossRef]

Science (3)

A. Badolato, K. Hennessy, M. Atatüre, J. Dreiser, E. Hu, P. M. Petroff, and A. Imamoglu, “Deterministic coupling of single quantum dots to single nanocavity modes,” Science 308(5725), 1158–1161 (2005).
[CrossRef] [PubMed]

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoğlu, “A quantum dot single-photon turnstile device,” Science 290(5500), 2282–2285 (2000).
[CrossRef] [PubMed]

I. Fushman, D. Englund, A. Faraon, N. Stoltz, P. Petroff, and J. Vučković, “Controlled phase shifts with a single quantum dot,” Science 320(5877), 769–772 (2008).
[CrossRef] [PubMed]

Other (4)

E. Peter, P. Senellart, D. Martrou, A. Lemaître, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett . 95, 067401- (2005).
[CrossRef] [PubMed]

X. D. Yang, C. J. Chen, C. A. Husko, and C. W. Wong, “Digital resonance tuning of high-Q/Vm silicon photonic crystal nanocavities by atomic layer deposition,” Appl. Phys. Lett . 91, 161114–1-3 (2007).
[CrossRef]

F. Intonti, S. Vignolini, F. Riboli, A. Vinattieri, D. S. Wiersma, M. Colocci, L. Balet, C. Monat, C. Zinoni, L. H. Li, R. Houdre, M. Francardi, A. Gerardino, A. Fiore, and M. Gurioli, “Spectral tuning and near-field imaging of photonic crystal microcavities,” Phys. Rev. B 78,041401(R) (2008).
[CrossRef]

M. R. Brozel, and G. E. Stillman, eds., Properties of Gallium Arsenide (INSPEC: London, 1996)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Sketch of the experimental configuration including GaAs microrings with embedded InGaAs QDs, placed on top of a PMN-PT actuator. V and F are the applied voltage and electric field respectively. F produces an out-of plane expansion (contraction) and consequently and in-plane contraction (expansion) of the resonators (see arrows). (b), (c) SEM images of a GaAs microring before (b) and after (c) removal of the AlGaAs sacrificial layer. (d) Top-view optical microscopy image of an array of microrings after transfer onto the piezoelectric actuator via PMMA. (e) RT in-plane strain vs. electrical field F (see (a)).

Fig. 3
Fig. 3

(a) PL map from a microring (with similar parameters as in Fig. 2(a)) showing emission lines associated with cavity modes and excitons vs. temperature T. (b) PL map of the same ring vs. applied voltage at T = 4 K. One excitonic line (X1) and two modes (M1 and M2) are marked. (c) Emission energy EX1 of X1 vs. energy EM1 of M1 for temperature tuning (extracted from (a)) and for strain tuning (extracted from (b)). (d) Energy difference between M2 and M1 as a function of the EM1 for strain- and T-tuning.

Fig. 2
Fig. 2

(a) Color-coded PL intensity as a function of applied voltage V and emission energy E (PL map) for a ring obtained from sample #1 with Do/Di of ~4.3/2.1 µm and sitting on PMMA (see inset). The voltage is swept between 0 to 1 kV. (b) Plot of the energy shift vs. V for the excitonic emission line shifting in the range indicated by horizontal dashed lines in (a). (c) PL map of the same ring measured in (a) after deposition of a second layer of PMMA (see inset). (d) PL map for a ring obtained from sample #2 with Do/Di of~3.3/1.7 µm. Different lines shift at different rates and cross each other at specific values of the applied bias.

Fig. 4
Fig. 4

(a) Result from FEM calculation of the deformation of a ring on PMMA due to an applied 0.1% compressive strain on the PMN-PT substrate. The dashed curve represents the ring perimeter before application of strain and the displacement undergone by the ring is enlarged by a factor of 100. The calculated energy bandgap shift ΔEg in the QD plane due to strain is color coded. (b) ΔEg along one of the two strained axes and 45°-to-strained axis (dotted lines in (a)). Rings are assumed to be located on top of a PMMA layer (blue lines) or to be completely embedded in PMMA (red lines).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Δ E g = a ( ε x x + ε y y + ε z z ) b 2 2 ( ( ε x x ε y y ) 2 + ( ε y y ε z z ) 2 + ( ε z z ε x x ) 2 ) + d 2 ( ε x y 2 + ε y z 2 + ε x z 2 ) ,

Metrics