Abstract

We investigate the nonlinear response of photonic crystal waveguides with suppressed two-photon absorption. A moderate decrease of the group velocity (~c/6 to c/15, a factor of 2.5) results in a dramatic (×30) enhancement of three-photon absorption well beyond the expected scaling, ∝1/v g 3. This non-trivial scaling of the effective nonlinear coefficients results from pulse compression, which further enhances the optical field beyond that of purely slow-group velocity interactions. These observations are enabled in mm-long slow-light photonic crystal waveguides owing to the strong anomalous group-velocity dispersion and positive chirp. Our numerical physical model matches measurements remarkably.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Harris, "Electromagnetically Induced Transparency," Phys. Today 50, 36 (1997).
    [CrossRef]
  2. L. Hau, S. Harris, Z. Dutton, and C. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999).
    [CrossRef]
  3. J. Longdell, E. Fraval, M. Sellars, and N. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 63601 (2005).
    [CrossRef]
  4. L. Deng and M. Payne, "Inhibiting the onset of the three-photon destructive interference in ultraslow propagationenhanced four-wave mixing with dual induced transparency," Phys. Rev. Lett. 91, 243902 (2003).
    [CrossRef] [PubMed]
  5. X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, "All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett. 102, 173902 (2009).
    [CrossRef] [PubMed]
  6. T. Baba, "Slow light in photonic crystals," Nat. Photonics 2, 465 (2008).
    [CrossRef]
  7. T. F. Krauss, "Why do we need slow light?" Nat. Photonics 2, 448 (2008).
    [CrossRef]
  8. Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
    [CrossRef] [PubMed]
  9. M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008).
    [CrossRef] [PubMed]
  10. M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
    [CrossRef]
  11. J. Topolancik, B. Ilic, and F. Vollmer, "Experimental Observation of Strong Photon Localization in Disordered Photonic Crystal Waveguides," Phys. Rev. Lett. 99, 253901 (2007).
    [CrossRef]
  12. R. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Let. 101, 103901 (2008).
    [CrossRef]
  13. M. Soljačić and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Materials 3, 211 (2004).
    [CrossRef] [PubMed]
  14. J. F. McMillan, M. Yu, D.-L. Kwong, and C.W. Wong, "Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides," Appl. Phys. Lett. 93, 251105 (2008).
    [CrossRef]
  15. Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
    [CrossRef]
  16. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
    [CrossRef] [PubMed]
  17. C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
    [CrossRef]
  18. K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, "Enhanced third-order nonlinear effects in slow-light photoniccrystal slab waveguides of line defect," Opt. Express 17, 7206 (2009).
    [CrossRef] [PubMed]
  19. T. Carmon and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third-harmonic generation," Nat. Physics 3, 430 (2007).
    [CrossRef] [PubMed]
  20. P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004).
    [CrossRef]
  21. B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
    [CrossRef] [PubMed]
  22. S. Combri’e, Q. V. Tran, E.Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, "Investigation of group delay, loss and disorder in a Photonic CrystalWaveguide by Low-Coherence Reflectometry," Appl. Phys. Lett. 90, 231104 (2007).
    [CrossRef]
  23. G. Stegeman, "Material figures of merit and implications to all-optical waveguide switching," Proc. SPIE 1852, 75 (1993).
    [CrossRef]
  24. J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
    [CrossRef]
  25. A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 62, 2465 (1993).
    [CrossRef]
  26. J. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341 (1997).
    [CrossRef]
  27. S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005).
    [CrossRef]
  28. Q. Tran, S. Combri’e, P. Colman, and A. De Rossi, "Photonic crystal membrane waveguides with low insertion losses, " Appl. Phys. Lett. 95, 061105 (2009).
    [CrossRef]
  29. E. Weidner, S. Combrie, A. De Rossi, Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
    [CrossRef]
  30. A. Parini, P. Hamel, A. De Rossi, S. Combri’e, Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaoun, and G. Vadal, "Time-Wavelength Reflectance Maps of Photonic Crystal Waveguides: A New View on Disorder-Induced Scattering," IEEE J. Lightwave Tech. 26, 3794 (2008).
    [CrossRef]
  31. S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173 (2001).
    [CrossRef]
  32. Rigorous intensity autocorrelation measurements of the pulse were carried out at each wavelength and current setting.
    [CrossRef] [PubMed]
  33. E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).
  34. B.S. Wherrett, "Scaling rules for multiphoton interband absorption in semiconductors," J. Opt. Soc. Am. B 1, 67 (1984).
    [CrossRef]
  35. S. Huges, L. Ramunno, J. F. Young, and J. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
    [CrossRef]
  36. S. Combri’e, E. Weidner, A. De Rossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, "Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system," Opt. Express 14, 7353 (2006).
    [CrossRef]
  37. A group-index dependent effective area for the slow-light PhCWG is included in the fifth-order nonlinear scaling, with A5e f f defined as: A5e f f = V5e f f a = _(_n2 ∑ |E|2dV)3 _n2 ∑ |E|6dV _1/2.
    [CrossRef] [PubMed]
  38. J. I. Dadap, N. C. Panoiu, X. Chen, I. Hsieh, X. Liu, C. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Jr, "Nonlinear-optical phase modification in dispersion-engineered Si photonic wires," Opt. Express 16, 1280 (2008).
  39. W. Ding, C. Benton, A. Gorbach, W. Wadsworth, J. Knight, D. Skryabin, M. Gnan, M. Sorrel, and R. M. De La Rue, "Solitons and spectral broadening in long silicon-on-insulator photonic wires," Opt. Express 16, 3310 (2008).
    [CrossRef] [PubMed]
  40. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
    [CrossRef] [PubMed]
  41. N. A. R. Bhat and J. Sipe, "Optical pulse propagation in nonlinear photonic crystals," Phys. Rev. E 64, 056604 (2001).
  42. The vector definition is applicable to materials with large indices of refraction and tight confinement such as PhCWGs: A3e f f = V3e f f a = (_n2 ∑ |E|2dV)2 _n2 ∑3(|E·E|2+2|E|4dV. The scalar definition is the typical: Ae f f = Ve f fa = (_n2 ∑ |E|2dV)2_n2 ∑ |E|4dV.
    [CrossRef]
  43. M. Sheik-Bahae, D. Hagan, and E. W. Van Stryland, "Dispersion and band-gap scaling of the electronic Kerreffect in solids associated with two-photon absorption," Phys. Rev. Lett. 65, 96 (1990).
  44. The often cited linear loss definition, Le f f (linear) = (1−e−〈L)/〈, is not applicable in our current experimentto estimate max. We derive a more appropriate definition for when three-photon absorption, as opposed to linear loss, is the dominant loss term: Le f fNL(ThPA) = 1Io√〈〈3 arctan_ 2L3e f f Io√〈〈31+e−〈L√1+2〈3I2o L3e f f _, to be detailed elsewhere.
    [CrossRef] [PubMed]
  45. S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981 (2007).

2009 (6)

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, "All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

Q. Tran, S. Combri’e, P. Colman, and A. De Rossi, "Photonic crystal membrane waveguides with low insertion losses, " Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
[CrossRef]

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, "Enhanced third-order nonlinear effects in slow-light photoniccrystal slab waveguides of line defect," Opt. Express 17, 7206 (2009).
[CrossRef] [PubMed]

2008 (8)

J. I. Dadap, N. C. Panoiu, X. Chen, I. Hsieh, X. Liu, C. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Jr, "Nonlinear-optical phase modification in dispersion-engineered Si photonic wires," Opt. Express 16, 1280 (2008).

W. Ding, C. Benton, A. Gorbach, W. Wadsworth, J. Knight, D. Skryabin, M. Gnan, M. Sorrel, and R. M. De La Rue, "Solitons and spectral broadening in long silicon-on-insulator photonic wires," Opt. Express 16, 3310 (2008).
[CrossRef] [PubMed]

A. Parini, P. Hamel, A. De Rossi, S. Combri’e, Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaoun, and G. Vadal, "Time-Wavelength Reflectance Maps of Photonic Crystal Waveguides: A New View on Disorder-Induced Scattering," IEEE J. Lightwave Tech. 26, 3794 (2008).
[CrossRef]

R. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Let. 101, 103901 (2008).
[CrossRef]

J. F. McMillan, M. Yu, D.-L. Kwong, and C.W. Wong, "Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides," Appl. Phys. Lett. 93, 251105 (2008).
[CrossRef]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008).
[CrossRef] [PubMed]

T. Baba, "Slow light in photonic crystals," Nat. Photonics 2, 465 (2008).
[CrossRef]

T. F. Krauss, "Why do we need slow light?" Nat. Photonics 2, 448 (2008).
[CrossRef]

2007 (5)

J. Topolancik, B. Ilic, and F. Vollmer, "Experimental Observation of Strong Photon Localization in Disordered Photonic Crystal Waveguides," Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

E. Weidner, S. Combrie, A. De Rossi, Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

S. Combri’e, Q. V. Tran, E.Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, "Investigation of group delay, loss and disorder in a Photonic CrystalWaveguide by Low-Coherence Reflectometry," Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

T. Carmon and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third-harmonic generation," Nat. Physics 3, 430 (2007).
[CrossRef] [PubMed]

S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981 (2007).

2006 (2)

S. Combri’e, E. Weidner, A. De Rossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, "Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system," Opt. Express 14, 7353 (2006).
[CrossRef]

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

2005 (6)

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

J. Longdell, E. Fraval, M. Sellars, and N. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 63601 (2005).
[CrossRef]

S. Huges, L. Ramunno, J. F. Young, and J. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

2004 (2)

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef]

M. Soljačić and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Materials 3, 211 (2004).
[CrossRef] [PubMed]

2003 (1)

L. Deng and M. Payne, "Inhibiting the onset of the three-photon destructive interference in ultraslow propagationenhanced four-wave mixing with dual induced transparency," Phys. Rev. Lett. 91, 243902 (2003).
[CrossRef] [PubMed]

2001 (2)

N. A. R. Bhat and J. Sipe, "Optical pulse propagation in nonlinear photonic crystals," Phys. Rev. E 64, 056604 (2001).

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173 (2001).
[CrossRef]

1999 (1)

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999).
[CrossRef]

1997 (2)

S. Harris, "Electromagnetically Induced Transparency," Phys. Today 50, 36 (1997).
[CrossRef]

J. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

1994 (1)

J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
[CrossRef]

1993 (2)

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 62, 2465 (1993).
[CrossRef]

G. Stegeman, "Material figures of merit and implications to all-optical waveguide switching," Proc. SPIE 1852, 75 (1993).
[CrossRef]

1990 (1)

M. Sheik-Bahae, D. Hagan, and E. W. Van Stryland, "Dispersion and band-gap scaling of the electronic Kerreffect in solids associated with two-photon absorption," Phys. Rev. Lett. 65, 96 (1990).

1984 (1)

Aitchison, J.

J. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

Aitchison, J. S.

J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
[CrossRef]

Al-Hemyari, K.

J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
[CrossRef]

Angelis, C. D.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Asakawa, K.

Baba, T.

R. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Let. 101, 103901 (2008).
[CrossRef]

T. Baba, "Slow light in photonic crystals," Nat. Photonics 2, 465 (2008).
[CrossRef]

S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981 (2007).

Bansropun, S.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Behroozi, C.

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999).
[CrossRef]

Benisty, H.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Benton, C.

Bhat, N. A. R.

N. A. R. Bhat and J. Sipe, "Optical pulse propagation in nonlinear photonic crystals," Phys. Rev. E 64, 056604 (2001).

Bigelow, M.

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Boyd, R.W.

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef]

Bulla, D. A.

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

Carmon, T.

T. Carmon and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third-harmonic generation," Nat. Physics 3, 430 (2007).
[CrossRef] [PubMed]

Cassette, S.

E. Weidner, S. Combrie, A. De Rossi, Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Chen, X.

Choi, D.-Y.

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

Chou, C.

Christodoulides, D. N.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Combrie, S.

E. Weidner, S. Combrie, A. De Rossi, Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

Corcoran, B.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

Dadap, J. I.

De La Rue, R. M.

De Rossi, A.

A. Parini, P. Hamel, A. De Rossi, S. Combri’e, Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaoun, and G. Vadal, "Time-Wavelength Reflectance Maps of Photonic Crystal Waveguides: A New View on Disorder-Induced Scattering," IEEE J. Lightwave Tech. 26, 3794 (2008).
[CrossRef]

E. Weidner, S. Combrie, A. De Rossi, Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

Deng, L.

L. Deng and M. Payne, "Inhibiting the onset of the three-photon destructive interference in ultraslow propagationenhanced four-wave mixing with dual induced transparency," Phys. Rev. Lett. 91, 243902 (2003).
[CrossRef] [PubMed]

Ding, W.

Dulkeith, E.

Dutton, Z.

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999).
[CrossRef]

Ebnali-Heidari, M.

Eggleton, B.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

El-Ganainy, R.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Engelen, R.

R. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Let. 101, 103901 (2008).
[CrossRef]

Foster, M. A.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008).
[CrossRef] [PubMed]

Fraval, E.

J. Longdell, E. Fraval, M. Sellars, and N. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 63601 (2005).
[CrossRef]

Gaeta, A. L.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008).
[CrossRef] [PubMed]

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Gauthier, D. J.

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Geraghty, D. F.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008).
[CrossRef] [PubMed]

Gnan, M.

Gorbach, A.

Green, W. M. J.

Grillet, C.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
[CrossRef]

Hagan, D.

M. Sheik-Bahae, D. Hagan, and E. W. Van Stryland, "Dispersion and band-gap scaling of the electronic Kerreffect in solids associated with two-photon absorption," Phys. Rev. Lett. 65, 96 (1990).

Hamann, H.

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Hamel, P.

A. Parini, P. Hamel, A. De Rossi, S. Combri’e, Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaoun, and G. Vadal, "Time-Wavelength Reflectance Maps of Photonic Crystal Waveguides: A New View on Disorder-Induced Scattering," IEEE J. Lightwave Tech. 26, 3794 (2008).
[CrossRef]

Harris, S.

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999).
[CrossRef]

S. Harris, "Electromagnetically Induced Transparency," Phys. Today 50, 36 (1997).
[CrossRef]

Hau, L.

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999).
[CrossRef]

Hsieh, I.

Huges, S.

S. Huges, L. Ramunno, J. F. Young, and J. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

Hughes, S.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).

Hutchings, D. C.

J. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

Ikeda, N.

Ilic, B.

J. Topolancik, B. Ilic, and F. Vollmer, "Experimental Observation of Strong Photon Localization in Disordered Photonic Crystal Waveguides," Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Inoue, K.

Ironside, C. N.

J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
[CrossRef]

Iwanow, R.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Joannopoulos, J. D.

Johnson, S. G.

Kang, J.

J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
[CrossRef]

Kang, J. U.

J. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

Knight, J.

Krauss, T. F.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

T. F. Krauss, "Why do we need slow light?" Nat. Photonics 2, 448 (2008).
[CrossRef]

Kubo, S.

Kuipers, L.

R. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Let. 101, 103901 (2008).
[CrossRef]

Kuramochi, E.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).

Kwong, D.-L.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, "All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

J. F. McMillan, M. Yu, D.-L. Kwong, and C.W. Wong, "Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides," Appl. Phys. Lett. 93, 251105 (2008).
[CrossRef]

Lamont, M.

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

Lecomte, M.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Lepeshkin, N. N.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef]

Lin, C.-H.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 62, 2465 (1993).
[CrossRef]

Lin, H.-H.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 62, 2465 (1993).
[CrossRef]

Lipson, M.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008).
[CrossRef] [PubMed]

Liu, X.

Locatelli, A.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Longdell, J.

J. Longdell, E. Fraval, M. Sellars, and N. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 63601 (2005).
[CrossRef]

Luan, F.

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

Luther-Davies, B.

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

Madden, S.

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

Manson, N.

J. Longdell, E. Fraval, M. Sellars, and N. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 63601 (2005).
[CrossRef]

Markowicz, P. P.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef]

McMillan, J. F.

J. F. McMillan, M. Yu, D.-L. Kwong, and C.W. Wong, "Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides," Appl. Phys. Lett. 93, 251105 (2008).
[CrossRef]

McNab, S.

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

McNab, S. J.

Modotto, D.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Monat, C.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
[CrossRef]

Morandotti, R.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Mori, D.

R. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Let. 101, 103901 (2008).
[CrossRef]

S. Kubo, D. Mori, and T. Baba, "Low-group-velocity and low-dispersion slow light in photonic crystal waveguides," Opt. Lett. 32, 2981 (2007).

Moss, D.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

Nagle, J.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Notomi, M.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).

O’Boyle, M.

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

O’Faolain, L.

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
[CrossRef]

Oda, H.

Okawachi, Y.

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Osgood, R. M.

Panoiu, N. C.

Parillau, O.

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Parini, A.

A. Parini, P. Hamel, A. De Rossi, S. Combri’e, Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaoun, and G. Vadal, "Time-Wavelength Reflectance Maps of Photonic Crystal Waveguides: A New View on Disorder-Induced Scattering," IEEE J. Lightwave Tech. 26, 3794 (2008).
[CrossRef]

Payne, M.

L. Deng and M. Payne, "Inhibiting the onset of the three-photon destructive interference in ultraslow propagationenhanced four-wave mixing with dual induced transparency," Phys. Rev. Lett. 91, 243902 (2003).
[CrossRef] [PubMed]

Pelusi, M.

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

Pozzi, F.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Prasad, P. N.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef]

Pudavar, H.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef]

Ramunno, L.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).

S. Huges, L. Ramunno, J. F. Young, and J. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

Salem, R.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008).
[CrossRef] [PubMed]

Schweinsberg, A.

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Sekaric, L.

Sellars, M.

J. Longdell, E. Fraval, M. Sellars, and N. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 63601 (2005).
[CrossRef]

Sharping, J. E.

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Sheik-Bahae, M.

J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
[CrossRef]

M. Sheik-Bahae, D. Hagan, and E. W. Van Stryland, "Dispersion and band-gap scaling of the electronic Kerreffect in solids associated with two-photon absorption," Phys. Rev. Lett. 65, 96 (1990).

Shinya, A.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).

Sipe, J.

S. Huges, L. Ramunno, J. F. Young, and J. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

N. A. R. Bhat and J. Sipe, "Optical pulse propagation in nonlinear photonic crystals," Phys. Rev. E 64, 056604 (2001).

Siviloglou, G. A.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Skryabin, D.

Sorel, M.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Sorrel, M.

Stanley, C. R.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Stegeman, G.

J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
[CrossRef]

G. Stegeman, "Material figures of merit and implications to all-optical waveguide switching," Proc. SPIE 1852, 75 (1993).
[CrossRef]

Stegeman, G. I.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

J. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 62, 2465 (1993).
[CrossRef]

Suntsov, S.

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

Tiryaki, H.

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef]

Topolancik, J.

J. Topolancik, B. Ilic, and F. Vollmer, "Experimental Observation of Strong Photon Localization in Disordered Photonic Crystal Waveguides," Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Tran, Q.

Q. Tran, S. Combri’e, P. Colman, and A. De Rossi, "Photonic crystal membrane waveguides with low insertion losses, " Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

E. Weidner, S. Combrie, A. De Rossi, Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

Turner-Foster, A. C.

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008).
[CrossRef] [PubMed]

Vahala, K. J.

T. Carmon and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third-harmonic generation," Nat. Physics 3, 430 (2007).
[CrossRef] [PubMed]

Van Stryland, E. W.

M. Sheik-Bahae, D. Hagan, and E. W. Van Stryland, "Dispersion and band-gap scaling of the electronic Kerreffect in solids associated with two-photon absorption," Phys. Rev. Lett. 65, 96 (1990).

Villeneuve, A.

J. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
[CrossRef]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 62, 2465 (1993).
[CrossRef]

Vlasov, Y.

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

Vlasov, Y. A.

Vo, T.

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

Vollmer, F.

J. Topolancik, B. Ilic, and F. Vollmer, "Experimental Observation of Strong Photon Localization in Disordered Photonic Crystal Waveguides," Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Wadsworth, W.

Watanabe, T.

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).

Weidner, E.

E. Weidner, S. Combrie, A. De Rossi, Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

Wherrett, B.S.

White, T.

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

Wong, C. W.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, "All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

Wong, C.W.

J. F. McMillan, M. Yu, D.-L. Kwong, and C.W. Wong, "Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides," Appl. Phys. Lett. 93, 251105 (2008).
[CrossRef]

Xia, F.

Yang, C. C.

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 62, 2465 (1993).
[CrossRef]

Yang, X.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, "All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

Young, J. F.

S. Huges, L. Ramunno, J. F. Young, and J. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

Yu, M.

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, "All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

J. F. McMillan, M. Yu, D.-L. Kwong, and C.W. Wong, "Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides," Appl. Phys. Lett. 93, 251105 (2008).
[CrossRef]

Zhu, Z.

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

Appl. Phys. Lett. (6)

J. F. McMillan, M. Yu, D.-L. Kwong, and C.W. Wong, "Observations of spontaneous Raman scattering in silicon slow-light photonic crystal waveguides," Appl. Phys. Lett. 93, 251105 (2008).
[CrossRef]

S. Combri’e, Q. V. Tran, E.Weidner, A. De Rossi, S. Cassette, P. Hamel, Y. Jaouen, R. Gabet, and A. Talneau, "Investigation of group delay, loss and disorder in a Photonic CrystalWaveguide by Low-Coherence Reflectometry," Appl. Phys. Lett. 90, 231104 (2007).
[CrossRef]

J. Kang, A. Villeneuve, M. Sheik-Bahae, G. Stegeman, K. Al-Hemyari, J. S. Aitchison, and C. N.  Ironside, "Limitation due to three-photon absorption on the useful spectral range for nonlinear optics in AlGaAs below half band gap," Appl. Phys. Lett. 65, 147 (1994).
[CrossRef]

A. Villeneuve, C. C. Yang, G. I. Stegeman, C.-H. Lin, and H.-H. Lin, "Ultrafast all-optical switching in semiconductor nonlinear directional couplers at half the band gap," Appl. Phys. Lett. 62, 2465 (1993).
[CrossRef]

Q. Tran, S. Combri’e, P. Colman, and A. De Rossi, "Photonic crystal membrane waveguides with low insertion losses, " Appl. Phys. Lett. 95, 061105 (2009).
[CrossRef]

E. Weidner, S. Combrie, A. De Rossi, Q. Tran, and S. Cassette, "Nonlinear and bistable behavior of an ultrahigh-Q GaAs photonic crystal nanocavity," Appl. Phys. Lett. 90, 101118 (2007).
[CrossRef]

IEEE J. Lightwave Tech. (1)

A. Parini, P. Hamel, A. De Rossi, S. Combri’e, Q. Tran, Y. Gottesman, R. Gabet, A. Talneau, Y. Jaoun, and G. Vadal, "Time-Wavelength Reflectance Maps of Photonic Crystal Waveguides: A New View on Disorder-Induced Scattering," IEEE J. Lightwave Tech. 26, 3794 (2008).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, "The Nonlinear Optical Properties of AlGaAs at the Half Band Gap," IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Vac. Sci. Technol. B (1)

S. Combrié, S. Bansropun, M. Lecomte, O. Parillaud, S. Cassette, H. Benisty, and J. Nagle, "Optimization of an inductively coupled plasma etching process of GaInP/GaAs based material for photonic band gap applications," J. Vac. Sci. Technol. B 23, 1521 (2005).
[CrossRef]

Nat. Materials (1)

M. Soljačić and J. D. Joannopoulos, "Enhancement of nonlinear effects using photonic crystals," Nat. Materials 3, 211 (2004).
[CrossRef] [PubMed]

Nat. Photonics (4)

M. Pelusi, F. Luan, T. Vo, M. Lamont, S. Madden, D. A. Bulla, D.-Y. Choi, B. Luther-Davies, and B. Eggleton, "Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth," Nat. Photonics 3, 139 (2009).
[CrossRef]

T. Baba, "Slow light in photonic crystals," Nat. Photonics 2, 465 (2008).
[CrossRef]

T. F. Krauss, "Why do we need slow light?" Nat. Photonics 2, 448 (2008).
[CrossRef]

B. Corcoran, C. Monat, C. Grillet, D. Moss, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Green light emission in silicon through slow-light enhanced third-harmonic generation in photonic-crystal waveguides," Nat. Photonics 3, 206 (2009).
[CrossRef] [PubMed]

Nat. Physics (1)

T. Carmon and K. J. Vahala, "Visible continuous emission from a silica microphotonic device by third-harmonic generation," Nat. Physics 3, 430 (2007).
[CrossRef] [PubMed]

Nature (3)

Y. Vlasov, M. O’Boyle, H. Hamann, and S. McNab, "Active control of slow light on a chip with photonic crystal waveguides," Nature 438, 65 (2005).
[CrossRef] [PubMed]

M. A. Foster, R. Salem, D. F. Geraghty, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, "Silicon-chip-based ultrafast optical oscilloscope," Nature 456, 81 (2008).
[CrossRef] [PubMed]

L. Hau, S. Harris, Z. Dutton, and C. Behroozi, "Light speed reduction to 17 metres per second in an ultracold atomic gas," Nature 397, 594 (1999).
[CrossRef]

Opt. Express (7)

G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, R. Morandotti, D. Modotto, A. Locatelli, C. D. Angelis, F. Pozzi, C. R. Stanley, and M. Sorel, "Enhanced third-order nonlinear effects in optical AlGaAs nanowires," Opt. Express 14, 9327 (2006).
[CrossRef] [PubMed]

S. G. Johnson and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis," Opt. Express 8, 173 (2001).
[CrossRef]

S. Combri’e, E. Weidner, A. De Rossi, S. Bansropun, S. Cassette, A. Talneau, and H. Benisty, "Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system," Opt. Express 14, 7353 (2006).
[CrossRef]

J. I. Dadap, N. C. Panoiu, X. Chen, I. Hsieh, X. Liu, C. Chou, E. Dulkeith, S. J. McNab, F. Xia, W. M. J. Green, L. Sekaric, Y. A. Vlasov, and R. M. Osgood, Jr, "Nonlinear-optical phase modification in dispersion-engineered Si photonic wires," Opt. Express 16, 1280 (2008).

W. Ding, C. Benton, A. Gorbach, W. Wadsworth, J. Knight, D. Skryabin, M. Gnan, M. Sorrel, and R. M. De La Rue, "Solitons and spectral broadening in long silicon-on-insulator photonic wires," Opt. Express 16, 3310 (2008).
[CrossRef] [PubMed]

C. Monat, B. Corcoran, M. Ebnali-Heidari, C. Grillet, B. Eggleton, T. White, L. O’Faolain, and T. F. Krauss, "Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides," Opt. Express 17, 2944 (2009).
[CrossRef]

K. Inoue, H. Oda, N. Ikeda, and K. Asakawa, "Enhanced third-order nonlinear effects in slow-light photoniccrystal slab waveguides of line defect," Opt. Express 17, 7206 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

E. Kuramochi, M. Notomi, S. Hughes, A. Shinya, T. Watanabe, and L. Ramunno, "Disorder-induced scattering loss of line-defect waveguides in photonic crystal slabs," Phys. Rev. B 72, 161318 (2005).

Phys. Rev. E (1)

N. A. R. Bhat and J. Sipe, "Optical pulse propagation in nonlinear photonic crystals," Phys. Rev. E 64, 056604 (2001).

Phys. Rev. Let. (1)

R. Engelen, D. Mori, T. Baba, and L. Kuipers, "Two regimes of slow-light losses revealed by adiabatic reduction of group velocity," Phys. Rev. Let. 101, 103901 (2008).
[CrossRef]

Phys. Rev. Lett. (8)

J. Topolancik, B. Ilic, and F. Vollmer, "Experimental Observation of Strong Photon Localization in Disordered Photonic Crystal Waveguides," Phys. Rev. Lett. 99, 253901 (2007).
[CrossRef]

Y. Okawachi, M. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R.W. Boyd, and A. L. Gaeta, "Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber," Phys. Rev. Lett. 94, 153902 (2005).
[CrossRef]

J. Longdell, E. Fraval, M. Sellars, and N. Manson, "Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid," Phys. Rev. Lett. 95, 63601 (2005).
[CrossRef]

L. Deng and M. Payne, "Inhibiting the onset of the three-photon destructive interference in ultraslow propagationenhanced four-wave mixing with dual induced transparency," Phys. Rev. Lett. 91, 243902 (2003).
[CrossRef] [PubMed]

X. Yang, M. Yu, D.-L. Kwong, and C. W. Wong, "All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities," Phys. Rev. Lett. 102, 173902 (2009).
[CrossRef] [PubMed]

S. Huges, L. Ramunno, J. F. Young, and J. Sipe, "Extrinsic Optical Scattering Loss in Photonic Crystal Waveguides: Role of Fabrication Disorder and Photon Group Velocity," Phys. Rev. Lett. 94, 033903 (2005).
[CrossRef]

P. P. Markowicz, H. Tiryaki, H. Pudavar, P. N. Prasad, N. N. Lepeshkin, and R.W. Boyd, "Dramatic Enhancement of Third-Harmonic Generation in Three-Dimensional Photonic Crystals," Phys. Rev. Lett. 92, 083903 (2004).
[CrossRef]

M. Sheik-Bahae, D. Hagan, and E. W. Van Stryland, "Dispersion and band-gap scaling of the electronic Kerreffect in solids associated with two-photon absorption," Phys. Rev. Lett. 65, 96 (1990).

Phys. Today (1)

S. Harris, "Electromagnetically Induced Transparency," Phys. Today 50, 36 (1997).
[CrossRef]

Proc. SPIE (1)

G. Stegeman, "Material figures of merit and implications to all-optical waveguide switching," Proc. SPIE 1852, 75 (1993).
[CrossRef]

Other (5)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2007).
[CrossRef] [PubMed]

The vector definition is applicable to materials with large indices of refraction and tight confinement such as PhCWGs: A3e f f = V3e f f a = (_n2 ∑ |E|2dV)2 _n2 ∑3(|E·E|2+2|E|4dV. The scalar definition is the typical: Ae f f = Ve f fa = (_n2 ∑ |E|2dV)2_n2 ∑ |E|4dV.
[CrossRef]

Rigorous intensity autocorrelation measurements of the pulse were carried out at each wavelength and current setting.
[CrossRef] [PubMed]

The often cited linear loss definition, Le f f (linear) = (1−e−〈L)/〈, is not applicable in our current experimentto estimate max. We derive a more appropriate definition for when three-photon absorption, as opposed to linear loss, is the dominant loss term: Le f fNL(ThPA) = 1Io√〈〈3 arctan_ 2L3e f f Io√〈〈31+e−〈L√1+2〈3I2o L3e f f _, to be detailed elsewhere.
[CrossRef] [PubMed]

A group-index dependent effective area for the slow-light PhCWG is included in the fifth-order nonlinear scaling, with A5e f f defined as: A5e f f = V5e f f a = _(_n2 ∑ |E|2dV)3 _n2 ∑ |E|6dV _1/2.
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(Color online) Linear properties: (a) Measured PhCWG transmission and corresponding ng of 6.6, 7.5, 8.8, 10.7, 12.6, 14.2, respectively, from low-coherence reflectometry after Refs. [23, 31]. Inset: SEM image with scale bar of 1 µm. (b) Sample optical low-coherence reflectometry (OLCR) data used to extract n g = c τ delay L . Inset: Extracted group indices versus derived GVD coefficients.

Fig. 2.
Fig. 2.

(Color online) Nonlinear measurements: (a): Pin -Pout depending on the group velocity. The increased curvature corresponds to larger nonlinear absorption due to slow-light enhanced three-photon absorption (ThPA) at longer wavelengths. Key: 1526 nm(circles), 1530nm(diamonds), 1534 nm(squares), 1538 nm(upward triangles), 1541 nm(downward triangles), and 1544 nm(stars). (b) Sample plot of the inverse transmission squared (1/T 2) versus P 2 in at 1534 nm (ng =8.8). The points are experimental data and the line is the best fit to extract the effective ThPA coefficient α 3eff . The key is the same as in (a). (c) Example inverse transmission (1/T) versus Pc plot depicting the mismatch of (and negligible) two-photon absorption in our slow-light GaInP PhCWGs, for the same experimental data of panel (b). (d) Extracted α 3eff (black dots) versus group index with the expected scaling of ThPA (solid red curve)

Fig. 3.
Fig. 3.

(Color online) Comparison of experimental and theoretical spectra for different wavelengths of 1526 nm (ng =6.6) (a), 1534 nm (ng =8.8) (b), and 1538 nm (ng =10.7) (c), with chirped sech 2 input. Experimentally derived parameters, also used in simulations, are shown in Table 1. (d) Experimentally 1/T 2 versus P 2 c for 1526 nm(ng =6.6). The solid line shows the simulated results including GVD, while the dashed line are simulation results without GVD. (e),(f) Same as (c) for but with (e) 1534 nm(ng =8.8) and (f) 1538 nm(ng =10.7). The strong upward bend of the curve indicates enhanced nonlinear absorption beyond conventional slow-light scaling, triggered from pulse compression.

Fig. 4.
Fig. 4.

(Color online)(a) and (b) RMS pulse broadening (nm) as a function of coupled input power Pc at: (a) 1526 nm (ng =6.6), (b) 1534 nm (ng =8.8) and (c) 1538 nm (ng =10.7). The points are experimental data, the solid line is simulation with GVD, and the dashed line is without GVD. We also show the case without slow-light (e.g. ng =3.12) in (c) as the dashed line. (d) N = L D L NL versus ng at Pin -max(W), the max peak power input into the PhCWG. For values of N>1, the pulse has the possibility of being compressed. (e) Plot of L/LD vs. ng . In addition to N>1, the pulse must also propagate a minimum length, related to the dispersion length LD , before compression can occur. (f) Effective nonlinear absorption, α 3eff and square of the effective SPM coefficient,γ 2eff , rescaled with a suitable constant, C. The local field enhancement of the two effects scales as predicted. The experimental values demonstrate non-trivial scaling.

Tables (1)

Tables Icon

Table 1. Parameters used in numerical simulations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

1 T 2 = P in 2 P out 2 = 1 η 2 K c 4 e 2 α L + 2 α 3 eff L 3 eff K c 2 e 2 α L P in 2 ,
A z = α 2 A α 3 eff 2 A 4 A + ik o n 2 A 3 eff A 2 A i β 2 2 2 A t 2

Metrics