Abstract

Dissipative soliton evolution in passively mode-locked fiber lasers with large net-normal-dispersion and high nonlinearity is investigated numerically and confirmed experimentally. I have proposed a theoretical model including the nonlinear polarization evolution and spectral filtering effect. This model successfully predicts the pulse behaviors of the proposed laser, such as the multi-soliton evolution, quasi-rectangle-spectrum profile, trapezoid-spectrum profile, and unstable state. Numerical results show that, in contrast to the typical net- or all-normal-dispersion fiber lasers with the slight variation of the pulse breathing, the breathing ratios of the pulse duration and spectral width of our laser are more than three and two during the intra-cavity propagation, respectively. The nonlinear polarization rotation mechanism together with spectral filtering effect plays the key roles on the pulse evolution. The experimental observations confirm the theoretical predictions.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution:Comparison with Semi-Analytical Models,” Fiber Integr. Opt. 27(5), 320–340 (2008).
    [CrossRef]
  2. A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
    [CrossRef]
  3. H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Tam, “Dissipative vector solitons in a dispersion- managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
    [CrossRef]
  4. A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
    [CrossRef]
  5. M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser,” Opt. Express 17(15), 13128–13139 (2009).
    [CrossRef] [PubMed]
  6. F. O. Ilday, F. W. Wise, and T. Sosnowski, “High-energy femtosecond stretched-pulse fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 27(17), 1531–1533 (2002).
    [CrossRef] [PubMed]
  7. M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17(2), 405–418 (2009).
    [CrossRef] [PubMed]
  8. S. Masuda, S. Niki, and M. Nakazawa, “Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator,” Opt. Express 17(8), 6613–6622 (2009).
    [CrossRef] [PubMed]
  9. B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
    [CrossRef]
  10. F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
    [CrossRef]
  11. Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).
  12. N. Akhmediev and A. Ankiewicz, “Dissipative Solitons: From Optics to Biology and Medicine,” Lect. Notes Phys. 751, 349 (2008).
  13. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
    [CrossRef]
  14. Dissipative Solitons, edited by N. Akhmediev and A. Ankiewicz (Springer, Berlin, 2005).
  15. W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
    [CrossRef]
  16. C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, “High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser,” Opt. Lett. 32(18), 2738–2740 (2007).
    [CrossRef] [PubMed]
  17. A. Cabasse, G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17(12), 9537–9542 (2009).
    [CrossRef] [PubMed]
  18. A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16(23), 19322–19329 (2008).
    [CrossRef] [PubMed]
  19. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
    [CrossRef]
  20. K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
    [CrossRef] [PubMed]
  21. B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, “Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers,” Opt. Lett. 34(10), 1585–1587 (2009).
    [CrossRef] [PubMed]
  22. V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
    [CrossRef]
  23. L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
    [CrossRef] [PubMed]
  24. P. A. Bélanger, “Stable operation of mode-locked fiber lasers: similariton regime,” Opt. Express 15(17), 11033–11041 (2007).
    [CrossRef] [PubMed]
  25. J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009).
    [CrossRef] [PubMed]
  26. A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
    [CrossRef] [PubMed]
  27. G. P. Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 875–877 (1990).
    [CrossRef]
  28. B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15(17), 10725–10732 (2007).
    [CrossRef] [PubMed]
  29. L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).L. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Tam, “Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion,” Opt. Commun. 281(12), 3324–3326 (2008).
    [CrossRef] [PubMed]
  30. J. W. Lou, M. Currie, and F. K. Fatemi, “Experimental measurements of solitary pulse characteristics from an all-normal-dispersion Yb-doped fiber laser,” Opt. Express 15(8), 4960–4965 (2007).
    [CrossRef] [PubMed]
  31. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
    [CrossRef] [PubMed]
  32. A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
    [CrossRef]
  33. X. M. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17(12), 9549–9557 (2009).
    [CrossRef] [PubMed]
  34. X. M. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
    [CrossRef] [PubMed]

2009

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[CrossRef]

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17(2), 405–418 (2009).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Tam, “Dissipative vector solitons in a dispersion- managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[CrossRef]

K. Kieu, W. H. Renninger, A. Chong, and F. W. Wise, “Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser,” Opt. Lett. 34(5), 593–595 (2009).
[CrossRef] [PubMed]

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009).
[CrossRef] [PubMed]

S. Masuda, S. Niki, and M. Nakazawa, “Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator,” Opt. Express 17(8), 6613–6622 (2009).
[CrossRef] [PubMed]

X. M. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
[CrossRef] [PubMed]

B. Ortaç, M. Baumgartl, J. Limpert, and A. Tünnermann, “Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers,” Opt. Lett. 34(10), 1585–1587 (2009).
[CrossRef] [PubMed]

A. Cabasse, G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17(12), 9537–9542 (2009).
[CrossRef] [PubMed]

X. M. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17(12), 9549–9557 (2009).
[CrossRef] [PubMed]

M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser,” Opt. Express 17(15), 13128–13139 (2009).
[CrossRef] [PubMed]

2008

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution:Comparison with Semi-Analytical Models,” Fiber Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[CrossRef]

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[CrossRef]

Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).

N. Akhmediev and A. Ankiewicz, “Dissipative Solitons: From Optics to Biology and Medicine,” Lect. Notes Phys. 751, 349 (2008).

A. Chong, W. H. Renninger, and F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25(2), 140–148 (2008).
[CrossRef]

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
[CrossRef] [PubMed]

B. G. Bale, J. N. Kutz, A. Chong, W. H. Renninger, and F. W. Wise, “Spectral filtering for high-energy mode-locking in normal dispersion fiber lasers,” J. Opt. Soc. Am. B 25(10), 1763–1770 (2008).
[CrossRef]

A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16(23), 19322–19329 (2008).
[CrossRef] [PubMed]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[CrossRef]

2007

J. W. Lou, M. Currie, and F. K. Fatemi, “Experimental measurements of solitary pulse characteristics from an all-normal-dispersion Yb-doped fiber laser,” Opt. Express 15(8), 4960–4965 (2007).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).L. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Tam, “Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion,” Opt. Commun. 281(12), 3324–3326 (2008).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Zhang, T. H. Cheng, H. Y. Tam, and C. Lu, “Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser,” Opt. Lett. 32(13), 1806–1808 (2007).L. Zhao, D. Y. Tang, X. Wu, H. Zhang, C. Lu, and H. Tam, “Dynamics of gain-guided solitons in a dispersion-managed fiber laser with large normal cavity dispersion,” Opt. Commun. 281(12), 3324–3326 (2008).
[CrossRef] [PubMed]

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15(17), 10725–10732 (2007).
[CrossRef] [PubMed]

P. A. Bélanger, “Stable operation of mode-locked fiber lasers: similariton regime,” Opt. Express 15(17), 11033–11041 (2007).
[CrossRef] [PubMed]

C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, “High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser,” Opt. Lett. 32(18), 2738–2740 (2007).
[CrossRef] [PubMed]

2006

2005

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
[CrossRef]

2002

1990

G. P. Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 875–877 (1990).
[CrossRef]

Abdelalim, M. A.

Agrawal, G. P.

G. P. Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 875–877 (1990).
[CrossRef]

Akhmediev, N.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009).
[CrossRef] [PubMed]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[CrossRef]

N. Akhmediev and A. Ankiewicz, “Dissipative Solitons: From Optics to Biology and Medicine,” Lect. Notes Phys. 751, 349 (2008).

Anis, H.

Ankiewicz, A.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

N. Akhmediev and A. Ankiewicz, “Dissipative Solitons: From Optics to Biology and Medicine,” Lect. Notes Phys. 751, 349 (2008).

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[CrossRef]

Apolonski, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
[CrossRef]

Bale, B. G.

Baumgartl, M.

Bélanger, P. A.

Buckley, J.

Cabasse, A.

Chai, L.

Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).

Chang, W.

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances in laser models with parameter management,” J. Opt. Soc. Am. B 25(12), 1972–1977 (2008).
[CrossRef]

Chédot, C.

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution:Comparison with Semi-Analytical Models,” Fiber Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

C. Lecaplain, C. Chédot, A. Hideur, B. Ortaç, and J. Limpert, “High-power all-normal-dispersion femtosecond pulse generation from a Yb-doped large-mode-area microstructure fiber laser,” Opt. Lett. 32(18), 2738–2740 (2007).
[CrossRef] [PubMed]

Chen, W.

Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).

Cheng, T. H.

Chernykh, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
[CrossRef]

Chong, A.

Currie, M.

Devine, N.

Fatemi, F. K.

Fernandez, A.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
[CrossRef]

Graf, R.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
[CrossRef]

Grelu, P.

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution:Comparison with Semi-Analytical Models,” Fiber Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

Haboucha, A.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[CrossRef]

Hideur, A.

Hu, M. L.

Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).

Ilday, F. O.

Kalashnikov, V. L.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
[CrossRef]

Khalil, D. A.

Kieu, K.

Komarov, A.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[CrossRef]

Kracht, D.

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[CrossRef]

Kutz, J. N.

Leblond, H.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[CrossRef]

Lecaplain, C.

Li, J.

Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).

Li, X.

Limpert, J.

Lin, A.

Liu, Q.

Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).

Liu, X. M.

Logvin, Y.

Lou, J. W.

Lu, C.

Lu, K.

Martel, G.

A. Cabasse, G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17(12), 9537–9542 (2009).
[CrossRef] [PubMed]

A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16(23), 19322–19329 (2008).
[CrossRef] [PubMed]

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution:Comparison with Semi-Analytical Models,” Fiber Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[CrossRef]

Masuda, S.

Mejia-Cortés, C.

Morgner, U.

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[CrossRef]

Nakazawa, M.

Naumov, S.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
[CrossRef]

Niki, S.

Olivier, M.

Ortaç, B.

Oudar, J. L.

Piché, M.

Podivilov, E.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
[CrossRef]

Renninger, W.

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[CrossRef]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[CrossRef] [PubMed]

Renninger, W. H.

Ruehl, A.

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[CrossRef]

Sanchez, F.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[CrossRef]

Schmidt, O.

Schreiber, T.

Song, Y. J.

Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).

Sosnowski, T.

Soto-Crespo, J. M.

Sun, H.

Tam, H.

Tam, H. Y.

Tang, D. Y.

Tünnermann, A.

Wandt, D.

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[CrossRef]

Wang, L.

Wang, Q. Y.

Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).

Wang, Y.

Wise, F.

Wise, F. W.

Wu, X.

Zhang, H.

Zhao, L.

Zhao, L. M.

Zhao, W.

Acta Phys. Sin.

Y. J. Song, M. L. Hu, Q. Liu, J. Li, W. Chen, L. Chai, and Q. Y. Wang, “A mode-locked Yb3+-doped double-clad large-mode-area fiber laser,” Acta Phys. Sin. 57, 5045–5048 (2008).

Fiber Integr. Opt.

G. Martel, C. Chédot, A. Hideur, and P. Grelu, “Numerical Maps for Fiber Lasers Mode Locked with Nonlinear Polarization Evolution:Comparison with Semi-Analytical Models,” Fiber Integr. Opt. 27(5), 320–340 (2008).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Ruehl, D. Wandt, U. Morgner, and D. Kracht, “Normal dispersive ultrafast fiber oscillators,” IEEE J. Sel. Top. Quantum Electron. 15(1), 170–181 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

G. P. Agrawal, “Amplification of ultrashort solitons in erbium-doped fiber amplifiers,” IEEE Photon. Technol. Lett. 2(12), 875–877 (1990).
[CrossRef]

J. Opt. Soc. Am. B

Laser Photonics Rev.

F. W. Wise, A. Chong, and W. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photonics Rev. 2(1-2), 58–73 (2008).
[CrossRef]

Lect. Notes Phys.

N. Akhmediev and A. Ankiewicz, “Dissipative Solitons: From Optics to Biology and Medicine,” Lect. Notes Phys. 751, 349 (2008).

N. J. Phys.

V. L. Kalashnikov, E. Podivilov, A. Chernykh, S. Naumov, A. Fernandez, R. Graf, and A. Apolonski, “Approaching the microjoule frontier with femtosecond laser oscillators: theory and comparison with experiment,” N. J. Phys. 7, 217 (2005).
[CrossRef]

Opt. Express

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16(15), 11453–11458 (2008).
[CrossRef] [PubMed]

L. M. Zhao, D. Y. Tang, H. Y. Tam, and C. Lu, “Pulse breaking recovery in fiber lasers,” Opt. Express 16(16), 12102–12107 (2008).
[CrossRef] [PubMed]

B. Ortaç, O. Schmidt, T. Schreiber, J. Limpert, A. Tünnermann, and A. Hideur, “High-energy femtosecond Yb-doped dispersion compensation free fiber laser,” Opt. Express 15(17), 10725–10732 (2007).
[CrossRef] [PubMed]

P. A. Bélanger, “Stable operation of mode-locked fiber lasers: similariton regime,” Opt. Express 15(17), 11033–11041 (2007).
[CrossRef] [PubMed]

A. Chong, J. Buckley, W. Renninger, and F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14(21), 10095–10100 (2006).
[CrossRef] [PubMed]

J. W. Lou, M. Currie, and F. K. Fatemi, “Experimental measurements of solitary pulse characteristics from an all-normal-dispersion Yb-doped fiber laser,” Opt. Express 15(8), 4960–4965 (2007).
[CrossRef] [PubMed]

A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16(23), 19322–19329 (2008).
[CrossRef] [PubMed]

A. Cabasse, G. Martel, and J. L. Oudar, “High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17(12), 9537–9542 (2009).
[CrossRef] [PubMed]

X. M. Liu, “Dissipative soliton evolution in ultra-large normal-cavity-dispersion fiber lasers,” Opt. Express 17(12), 9549–9557 (2009).
[CrossRef] [PubMed]

M. A. Abdelalim, Y. Logvin, D. A. Khalil, and H. Anis, “Steady and oscillating multiple dissipative solitons in normal-dispersion mode-locked Yb-doped fiber laser,” Opt. Express 17(15), 13128–13139 (2009).
[CrossRef] [PubMed]

M. Olivier and M. Piché, “Origin of the bound states of pulses in the stretched-pulse fiber laser,” Opt. Express 17(2), 405–418 (2009).
[CrossRef] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, X. Wu, and H. Tam, “Dissipative vector solitons in a dispersion- managed cavity fiber laser with net positive cavity dispersion,” Opt. Express 17(2), 455–460 (2009).
[CrossRef]

J. M. Soto-Crespo, N. Akhmediev, C. Mejia-Cortés, and N. Devine, “Dissipative ring solitons with vorticity,” Opt. Express 17(6), 4236–4250 (2009).
[CrossRef] [PubMed]

S. Masuda, S. Niki, and M. Nakazawa, “Environmentally stable, simple passively mode-locked fiber ring laser using a four-port circulator,” Opt. Express 17(8), 6613–6622 (2009).
[CrossRef] [PubMed]

X. M. Liu, L. Wang, X. Li, H. Sun, A. Lin, K. Lu, Y. Wang, and W. Zhao, “Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion,” Opt. Express 17(10), 8506–8512 (2009).
[CrossRef] [PubMed]

Opt. Fiber Technol.

A. Haboucha, A. Komarov, H. Leblond, F. Sanchez, and G. Martel, “Mechanism of multiple pulse formation in the normal dispersion regime of passively mode-locked fiber ring lasers,” Opt. Fiber Technol. 14(4), 262–267 (2008).
[CrossRef]

Opt. Lett.

Phys. Rev. A

W. Chang, J. M. Soto-Crespo, A. Ankiewicz, and N. Akhmediev, “Dissipative soliton resonances in the anomalous dispersion regime,” Phys. Rev. A 79(3), 033840 (2009).
[CrossRef]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77(2), 023814 (2008).
[CrossRef]

Other

Dissipative Solitons, edited by N. Akhmediev and A. Ankiewicz (Springer, Berlin, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Illustration of the fiber laser cavity elements used for the proposed model. EDF, erbium-doped fiber; WDM, wavelength-division-multiplexed; PAPM, polarization additive-pulse mode-locking; SMF, single-mode fiber.

Fig. 2
Fig. 2

Illustration (a) before and (b), (c) after the polarization additive-pulse mode-locking (PAPM) effect on pulses in the temporal domain.

Fig. 3
Fig. 3

Transmission profile of (a) EDF and (b) PAPM in the spectral domain.

Fig. 4
Fig. 4

Transient evolution in the temporal domain from quantum noise to steady solution. g 0 = 2 m−1, Es 0 = 1.6 nJ.

Fig. 5
Fig. 5

Intra-cavity pulse evolution in (a) the temporal and spectral domains and (b) the pulse energy and peak power. OC: output coupler, PAPM: polarization additive-pulse mode-locking.

Fig. 6
Fig. 6

(a) Temporal power profile (solid curve) and instantaneous frequency (dashed curve) and (b) spectral power profile at the output position. The pulse duration and spectral width are 20.8 ps and 22.3 nm, respectively.

Fig. 7
Fig. 7

Temporal power profile (solid curve) and instantaneous frequency (dashed curve) after

Fig. 8
Fig. 8

Evolution of the output spectrum versus the initial gain saturation energy Es 0: (a) Es 0 = 0.8 nJ, (b) Es 0 = 0.9 nJ, (c) Es 0 = 1.5 nJ, (d) Es 0 = 2 nJ, (e) Es 0 = 2.2 nJ, and (f) Es 0 = 3.4 nJ.

Fig. 9
Fig. 9

Temporal power profile (solid curve) and instantaneous frequency (dashed curve) of the pulses before (a) and after (b) extra-cavity dechirping. The pulse durations are 19.1 ps and 547 fs before and after extra-cavity dechirping, respectively. g 0 = 2 m−1, Es 0 = 0.8 nJ, and the corresponding spectrum of (a) is shown in Fig. 8(a).

Fig. 10
Fig. 10

Schematic diagram of the experimental setup for dissipative solitons.

Fig. 12
Fig. 12

Optical spectra of the DSs at the unstable state.

Fig. 13
Fig. 13

Oscilloscope trace for dual-soliton operation.

Fig. 14
Fig. 14

Pulse profile in the spectral domain. (a) Temporal or (b) spectral filtering effect is separately taken into account. All parameters are the same as those used in Fig. 6.

Fig. 15
Fig. 15

Relationships of (a) the pulse duration, (b) the intra-cavity pulse energy, and (c) the extracted pulse energy versus the output coupler ratio. Es 0 = 1.2 nJ.

Tables (1)

Tables Icon

Table 1 Fiber parameters used in the simulation of the laser cavity

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

T = 0.94 * ( I ( t ) I max ) 2 ,
A z + i β 2 2 2 A t 2 = g A + i γ | A | 2 A + g 2 Ω g 2 2 A t 2 ,
g = g 0 exp ( E p E s ) .
E p = T R / 2 T R / 2 | A ( z , ζ ) | 2 d ζ ,

Metrics