Abstract

An all-optical and polarization-independent spatial filter was developed in a vertically-aligned (VA) polymer-stabilized liquid crystal (PSLC) film with a photoconductive (PC) layer. This spatial filter is based on the effect of light on the conductivity of PC layer: high (low)-intensity light makes the conductivity of the PC layer high (low), resulting in a low (high) threshold voltage of the PC-coated VA PSLC cell. Experimental results indicate that this spatial filter is a high-pass filter with low optical-power consumption (about 1.11 mW/cm2) in an optical Fourier transform system. The high-pass characteristic was confirmed by simulation. Accordingly, the all-optical and polarization-independent spatial filter can be used to enhance the edges of images.

© 2009 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Electro-optical characteristics of holographic polymer dispersed liquid crystal gratings doped with nanosilver

Menghua Zhang, Jihong Zheng, Kun Gui, Kangni Wang, Caihong Guo, Xiaopeng Wei, and Songlin Zhuang
Appl. Opt. 52(31) 7411-7418 (2013)

Polarization-independent tunable optical filters using bilayer polarization gratings

Elena Nicolescu and Michael J. Escuti
Appl. Opt. 49(20) 3900-3904 (2010)

Curvature and separation discrimination at texture boundaries

Hugh R. Wilson and Whitman A. Richards
J. Opt. Soc. Am. A 9(10) 1653-1662 (1992)

References

  • View by:
  • |
  • |
  • |

  1. C. Egami, Y. Suzuki, T. Uemori, O. Sugihara, and N. Okamoto, “Self-adaptive spatial filtering by use of azo chromophores doped in low glass-transition-temperature polymers,” Opt. Lett. 22(18), 1424–1426 ( 1997).
    [Crossref]
  2. C. S. Yelleswarapu, P. Wu, S. R. Kothapalli, D. V. G. L. N. Rao, B. R. Kimball, S. S. S. Sai, R. Gowrishankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express 14(4), 1451–1457 ( 2006).
    [Crossref] [PubMed]
  3. T. H. Lin and A. Y. Fuh, “Polarization controllable spatial filter based on azo-dye-doped liquid-crystal film,” Opt. Lett. 30(11), 1390–1392 ( 2005).
    [Crossref] [PubMed]
  4. H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 ( 2008).
    [Crossref]
  5. M. Y. Shih, A. Shishido, and I. C. Khoo, “All-optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition-subtraction,” Opt. Lett. 26(15), 1140–1142 ( 2001).
    [Crossref] [PubMed]
  6. A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 ( 2004).
    [Crossref]
  7. J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 ( 1996).
    [Crossref]
  8. F. L. Vladimirov, A. N. Chaika, I. E. Morichev, N. I. Pletneva, A. F. Naumov, and M. Yu. Loktev, “Modulation characteristics of optically controllable transparencies based on a photoconductor-liquid-crystal structure,” J. Opt. Technol. 67, 712–716 ( 2000).
    [Crossref]
  9. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 ( 2004).
    [Crossref]
  10. E. Hecht, Optics (Addison Wesley, San Francisco, 2002), Chap. 11.
  11. S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons Press, New York, 1993), Chap. 3.
  12. R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stablized nematic liquid crystals,” Phys. Rev. E 61(2), 1567–1573 ( 2000).
    [Crossref]

2008 (1)

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 ( 2008).
[Crossref]

2006 (1)

2005 (1)

2004 (2)

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 ( 2004).
[Crossref]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 ( 2004).
[Crossref]

2001 (1)

2000 (2)

1997 (1)

1996 (1)

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 ( 1996).
[Crossref]

Chaika, A. N.

Dyadyusha, A.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 ( 2004).
[Crossref]

Egami, C.

Fuh, A. Y.

Fuh, A. Y. G.

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 ( 2004).
[Crossref]

Gowrishankar, R.

Huang, S. Y.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 ( 2008).
[Crossref]

Kaczmarek, M.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 ( 2004).
[Crossref]

Khoo, I. C.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 ( 2004).
[Crossref]

M. Y. Shih, A. Shishido, and I. C. Khoo, “All-optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition-subtraction,” Opt. Lett. 26(15), 1140–1142 ( 2001).
[Crossref] [PubMed]

Kimball, B. R.

Kothapalli, S. R.

Lee, C. R.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 ( 2008).
[Crossref]

Lin, T. H.

T. H. Lin and A. Y. Fuh, “Polarization controllable spatial filter based on azo-dye-doped liquid-crystal film,” Opt. Lett. 30(11), 1390–1392 ( 2005).
[Crossref] [PubMed]

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 ( 2004).
[Crossref]

Lo, K. C.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 ( 2008).
[Crossref]

Loktev, M. Yu.

Ma, R. Q.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stablized nematic liquid crystals,” Phys. Rev. E 61(2), 1567–1573 ( 2000).
[Crossref]

Mo, T. S.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 ( 2008).
[Crossref]

Morichev, I. E.

Naumov, A. F.

Okamoto, N.

Peng, W.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 ( 1996).
[Crossref]

Pletneva, N. I.

Qian, J.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 ( 1996).
[Crossref]

Qian, S.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 ( 1996).
[Crossref]

Rao, D. V. G. L. N.

Sai, S. S. S.

Shih, M. Y.

Shishido, A.

Sivaramakrishnan, S.

Slussarenko, S.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 ( 2004).
[Crossref]

Sugihara, O.

Suzuki, Y.

Uemori, T.

Vladimirov, F. L.

Wang, J. D.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 ( 2008).
[Crossref]

Wu, P.

Xu, C.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 ( 1996).
[Crossref]

Yang, D. K.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stablized nematic liquid crystals,” Phys. Rev. E 61(2), 1567–1573 ( 2000).
[Crossref]

Yeh, H. C.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 ( 2008).
[Crossref]

Yelleswarapu, C. S.

Appl. Phys. Lett. (1)

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 ( 2008).
[Crossref]

Chem. Phys. Lett. (1)

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 ( 1996).
[Crossref]

J. Appl. Phys. (2)

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 ( 2004).
[Crossref]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 ( 2004).
[Crossref]

J. Opt. Technol. (1)

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E (1)

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stablized nematic liquid crystals,” Phys. Rev. E 61(2), 1567–1573 ( 2000).
[Crossref]

Other (2)

E. Hecht, Optics (Addison Wesley, San Francisco, 2002), Chap. 11.

S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons Press, New York, 1993), Chap. 3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Configuration of PC-coated VA PSLC cell; (b) Side-view of optical Fourier transform system (A: aperture, L1 and L2: transforming and inverse transforming lenses with same focal length, Ii 0, Ii 1 and Ii 3: intensities of incident zeroth-, first- and third-order diffracted beams, V: external dc-voltage, f: focal length, Σ t and Σ i : transform and image planes).

Fig. 2
Fig. 2

The external dc-voltage dependent transmittance of the PC-coated VA PSLC cell at the incident diffracted intensities Ii 0 = 1 mW/cm2, Ii 1 = 0.4 mW/cm2, and Ii 3 = 0.04 mW/cm2.

Fig. 3
Fig. 3

Reconstructed and simulated images of 1D black-white grating, consistent with the results in Fig. 2. Left: all pass (zeroth-ninth orders); middle: zeroth order filtered; right: zeroth and first orders filtered.

Fig. 4
Fig. 4

Reconstructed images of 2D black-white grating, operated with applied external dc-voltage, at incident diffracted intensities Ii 0 = 1 mW/cm2, Ii 1 = 0.1 mW/cm2, and Ii 2 = 0.01 mW/cm2. Left: all pass (zeroth-third orders); left-of-center: zeroth order filtered; right-of-center: zeroth and first orders filtered; right: zeroth, first and second orders filtered.

Fig. 5
Fig. 5

(a) Images of rectangle and Chinese character at external dc-voltage V = 0 V. (b) Edge-enhanced images of those at external dc-voltage V = 40 V. Incident diffracted intensities are Ii 0 = 1 mW/cm2, Ii 1 = 0.1 mW/cm2, and Ii 2 = 0.01 mW/cm2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V PSLC = V 1 + d PC σ PC σ PSLC d PSLC ,
σ PC = σ PC dark + α ( I cos θ ) β ,
V > ( 1 + p σ PC dark + α ( I cos θ ) β ) V C ,
V th ( I ) = ( 1 + p σ PC dark + α ( I cos θ ) β ) V C .

Metrics