Abstract

An all-optical and polarization-independent spatial filter was developed in a vertically-aligned (VA) polymer-stabilized liquid crystal (PSLC) film with a photoconductive (PC) layer. This spatial filter is based on the effect of light on the conductivity of PC layer: high (low)-intensity light makes the conductivity of the PC layer high (low), resulting in a low (high) threshold voltage of the PC-coated VA PSLC cell. Experimental results indicate that this spatial filter is a high-pass filter with low optical-power consumption (about 1.11 mW/cm2) in an optical Fourier transform system. The high-pass characteristic was confirmed by simulation. Accordingly, the all-optical and polarization-independent spatial filter can be used to enhance the edges of images.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Egami, Y. Suzuki, T. Uemori, O. Sugihara, and N. Okamoto, “Self-adaptive spatial filtering by use of azo chromophores doped in low glass-transition-temperature polymers,” Opt. Lett. 22(18), 1424–1426 (1997).
    [CrossRef]
  2. C. S. Yelleswarapu, P. Wu, S. R. Kothapalli, D. V. G. L. N. Rao, B. R. Kimball, S. S. S. Sai, R. Gowrishankar, and S. Sivaramakrishnan, “All-optical spatial filtering with power limiting materials,” Opt. Express 14(4), 1451–1457 (2006).
    [CrossRef] [PubMed]
  3. T. H. Lin and A. Y. Fuh, “Polarization controllable spatial filter based on azo-dye-doped liquid-crystal film,” Opt. Lett. 30(11), 1390–1392 (2005).
    [CrossRef] [PubMed]
  4. H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
    [CrossRef]
  5. M. Y. Shih, A. Shishido, and I. C. Khoo, “All-optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition-subtraction,” Opt. Lett. 26(15), 1140–1142 (2001).
    [CrossRef] [PubMed]
  6. A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
    [CrossRef]
  7. J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 (1996).
    [CrossRef]
  8. F. L. Vladimirov, A. N. Chaika, I. E. Morichev, N. I. Pletneva, A. F. Naumov, and M. Yu. Loktev, “Modulation characteristics of optically controllable transparencies based on a photoconductor-liquid-crystal structure,” J. Opt. Technol. 67, 712–716 (2000).
    [CrossRef]
  9. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
    [CrossRef]
  10. E. Hecht, Optics (Addison Wesley, San Francisco, 2002), Chap. 11.
  11. S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons Press, New York, 1993), Chap. 3.
  12. R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stablized nematic liquid crystals,” Phys. Rev. E 61(2), 1567–1573 (2000).
    [CrossRef]

2008 (1)

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

2006 (1)

2005 (1)

2004 (2)

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

2001 (1)

2000 (2)

1997 (1)

1996 (1)

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 (1996).
[CrossRef]

Chaika, A. N.

Dyadyusha, A.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

Egami, C.

Fuh, A. Y.

Fuh, A. Y. G.

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
[CrossRef]

Gowrishankar, R.

Huang, S. Y.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Kaczmarek, M.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

Khoo, I. C.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

M. Y. Shih, A. Shishido, and I. C. Khoo, “All-optical image processing by means of a photosensitive nonlinear liquid-crystal film: edge enhancement and image addition-subtraction,” Opt. Lett. 26(15), 1140–1142 (2001).
[CrossRef] [PubMed]

Kimball, B. R.

Kothapalli, S. R.

Lee, C. R.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Lin, T. H.

T. H. Lin and A. Y. Fuh, “Polarization controllable spatial filter based on azo-dye-doped liquid-crystal film,” Opt. Lett. 30(11), 1390–1392 (2005).
[CrossRef] [PubMed]

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
[CrossRef]

Lo, K. C.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Loktev, M. Yu.

Ma, R. Q.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stablized nematic liquid crystals,” Phys. Rev. E 61(2), 1567–1573 (2000).
[CrossRef]

Mo, T. S.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Morichev, I. E.

Naumov, A. F.

Okamoto, N.

Peng, W.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 (1996).
[CrossRef]

Pletneva, N. I.

Qian, J.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 (1996).
[CrossRef]

Qian, S.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 (1996).
[CrossRef]

Rao, D. V. G. L. N.

Sai, S. S. S.

Shih, M. Y.

Shishido, A.

Sivaramakrishnan, S.

Slussarenko, S.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

Sugihara, O.

Suzuki, Y.

Uemori, T.

Vladimirov, F. L.

Wang, J. D.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Wu, P.

Xu, C.

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 (1996).
[CrossRef]

Yang, D. K.

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stablized nematic liquid crystals,” Phys. Rev. E 61(2), 1567–1573 (2000).
[CrossRef]

Yeh, H. C.

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Yelleswarapu, C. S.

Appl. Phys. Lett. (1)

H. C. Yeh, J. D. Wang, K. C. Lo, C. R. Lee, T. S. Mo, and S. Y. Huang, “Optically controllable transflective spatial filter with high- and low-pass or notch- and band-pass functions based on a dye-doped cholesteric liquid crystal film,” Appl. Phys. Lett. 92(1), 011121 (2008).
[CrossRef]

Chem. Phys. Lett. (1)

J. Qian, C. Xu, S. Qian, and W. Peng, “Optical characteristic of PVK/C60 films fabricated by physical jet deposition,” Chem. Phys. Lett. 257(5-6), 563–568 (1996).
[CrossRef]

J. Appl. Phys. (2)

A. Y. G. Fuh and T. H. Lin, “Electrically switchable spatial filter based on polymer-dispersed liquid crystal film,” J. Appl. Phys. 96(10), 5402–5404 (2004).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96(5), 2616–2623 (2004).
[CrossRef]

J. Opt. Technol. (1)

Opt. Express (1)

Opt. Lett. (3)

Phys. Rev. E (1)

R. Q. Ma and D. K. Yang, “Freedericksz transition in polymer-stablized nematic liquid crystals,” Phys. Rev. E 61(2), 1567–1573 (2000).
[CrossRef]

Other (2)

E. Hecht, Optics (Addison Wesley, San Francisco, 2002), Chap. 11.

S. T. Wu, and D. K. Yang, Reflective Liquid Crystal Displays (John Wiley & Sons Press, New York, 1993), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Configuration of PC-coated VA PSLC cell; (b) Side-view of optical Fourier transform system (A: aperture, L1 and L2: transforming and inverse transforming lenses with same focal length, Ii 0, Ii 1 and Ii 3: intensities of incident zeroth-, first- and third-order diffracted beams, V: external dc-voltage, f: focal length, Σ t and Σ i : transform and image planes).

Fig. 2
Fig. 2

The external dc-voltage dependent transmittance of the PC-coated VA PSLC cell at the incident diffracted intensities Ii 0 = 1 mW/cm2, Ii 1 = 0.4 mW/cm2, and Ii 3 = 0.04 mW/cm2.

Fig. 3
Fig. 3

Reconstructed and simulated images of 1D black-white grating, consistent with the results in Fig. 2. Left: all pass (zeroth-ninth orders); middle: zeroth order filtered; right: zeroth and first orders filtered.

Fig. 4
Fig. 4

Reconstructed images of 2D black-white grating, operated with applied external dc-voltage, at incident diffracted intensities Ii 0 = 1 mW/cm2, Ii 1 = 0.1 mW/cm2, and Ii 2 = 0.01 mW/cm2. Left: all pass (zeroth-third orders); left-of-center: zeroth order filtered; right-of-center: zeroth and first orders filtered; right: zeroth, first and second orders filtered.

Fig. 5
Fig. 5

(a) Images of rectangle and Chinese character at external dc-voltage V = 0 V. (b) Edge-enhanced images of those at external dc-voltage V = 40 V. Incident diffracted intensities are Ii 0 = 1 mW/cm2, Ii 1 = 0.1 mW/cm2, and Ii 2 = 0.01 mW/cm2.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

V PSLC = V 1 + d PC σ PC σ PSLC d PSLC ,
σ PC = σ PC dark + α ( I cos θ ) β ,
V > ( 1 + p σ PC dark + α ( I cos θ ) β ) V C ,
V th ( I ) = ( 1 + p σ PC dark + α ( I cos θ ) β ) V C .

Metrics